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Abstract

Policymakers often intervene in goods markets to effect redistribution—for exam-

ple, via price controls, differential taxation, or in-kind transfers. We investigate the op-

timality of such policies alongside the (optimally-designed) income tax. In our frame-

work, agents possess private information about their ability to generate income and

consumption preferences, and a planner maximizes a social welfare function subject

to resource constraints. We uncover a generalization of the Atkinson-Stiglitz theorem

by showing that goods markets should be undistorted if (i) individual utility functions

feature no income effects, (ii) redistributive preferences depend only on agents’ ability,

and (iii) there is no statistical correlation between ability and taste for goods. We also

show, however, that the conclusion of the Atkinson-Stiglitz theorem fails if any of the

three assumptions is relaxed. In a special case of our model with linear utilities, bi-

nary ability, and continuous willingness to pay for a single good, we characterize the

globally optimal mechanism and show that it may feature means-tested consumption

subsidies, in-kind transfers, and differential commodity taxation.
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1 Introduction

Policymakers often distort market allocations as a way of addressing inequality. In devel-
oped countries, for example, it is common for local housing authorities to impose rent-
control policies, provide affordable housing, or subsidize construction of rental housing
for low-income tenants. Food assistance is also prevalent—for example, in the form of
food stamps in the United States. And recently, many European countries imposed caps
on electricity prices to shield vulnerable households from sharp increases in energy bills.
In developing countries, likewise, in-kind provision of food items and subsidized energy
consumption have long been an important part of the safety net.

Market-level redistributive policies defy conventional economic wisdom—rooted in the
welfare theorems—that market interventions compromise efficiency and thus should be
avoided (absent market failures). A recent literature on inequality-aware market design has
pointed out, however, that policies such as price controls and rationing may be justified
on welfare grounds if policymakers lack the information or instruments needed to effect
redistribution through targeted lump-sum transfers.1 The key intuition is that agents’ be-
havior in the market may reveal information about their welfare weights: in settings where
agents’ redistribution-worthiness is not directly observed, willingness to pay for a good
may be correlated with welfare-relevant characteristics (such as income level or wealth).
By modifying market-clearing rules to induce appropriate self-selection, the designer can
trade off efficiency in the market with equity—distorting the allocation in order to effect
redistribution to agents with higher levels of need.

However, arguments in favor of market interventions remain incomplete without consid-
ering the role of broader policy instruments that address inequality. In particular, income
taxation is often thought of as the primary—and ideal—tool for effecting redistribution in
the presence of incentive constraints (see, e.g., Kaplow (2011) and the references therein).
Thus, we ask: Can redistribution through markets be justified if the policymaker also con-
trols income taxation? And if yes, how do market interventions interact with the income
tax to strike the balance between equity and efficiency?

The public finance literature has provided the answer in a core benchmark case: By the
Atkinson-Stiglitz theorem, if agents only differ in their ability to generate income (and pref-
erences satisfy a weak-separability assumption), income taxes alone are sufficient to max-
imize social welfare for any set of welfare weights (Atkinson and Stiglitz (1976)). In other

1See, for example, the work of Condorelli (2013), Dworczak r⃝ al. (2021), and Akbarpour r⃝ al. (2024)—
building on classical insights such as those of Weitzman (1977), Spence (1977) and Nichols and Zeckhauser
(1982).
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words, goods market interventions are redundant at best and harmful at worst. Under this
perspective, redistribution through markets can be defended only if the policymaker lacks
the ability to adjust income taxes to the socially optimal levels.

In this paper, we show that market interventions can be a valuable redistributive tool more
broadly. Specifically, we examine the desirability of interventions in goods markets in the
presence of multidimensional heterogeneity, where individuals differ both in their produc-
tive ability and in their tastes for goods. In line with the public finance literature studying
the robustness of the Atkinson-Stiglitz theorem, we find that once heterogeneity in tastes
is introduced, it may be beneficial to supplement the income tax with market interven-
tions. In contrast to most of that literature, by employing a mechanism design framework
under a few simplifying assumptions, we are able to characterize the optimal combination
of income taxation and redistributive market design. Our characterization of the optimal
multidimensional mechanism shows that it is typically optimal to use both income taxation
and redistributive market design to resolve the equity-efficiency trade-off.

Our analysis has two parts. As a baseline, we first prove an extension of the Atkinson-
Stiglitz theorem to our setting with multidimensional heterogeneity in ability and tastes;
however, this is only possible under three strong assumptions. We show that income taxa-
tion alone is sufficient (and market interventions are redundant) when:

A1. There are no income effects;2

A2. Welfare weights depend only on agents’ ability levels, and not on their tastes for
goods;

A3. Tastes for goods and ability are statistically independent.

Assumptions A1 and A2 together imply that the planner has no desire to redistribute be-
tween agents with different tastes; thus, the planner is concerned only with redistribution
across ability levels. By Assumptions A1 and A3, meanwhile, willingness to pay for goods
is uninformative about ability. Thus, under Assumptions A1–A3, distorting choices in the
goods market neither serves a valuable redistributive role on its own, nor screens agents’
ability levels—and hence it should be avoided.

In the second part of our analysis, we show that the assumptions used to derive the Atkinson-
Stiglitz result in our setting are “tight” in the sense that if we relax any one of them, the con-
clusion of the Atkinson-Stiglitz theorem fails. We characterize the optimal mix of income

2Specifically, we require that there exists a consumption good which enters the utility of all individuals
linearly (with an identical coefficient) and which can be consumed in any real (incl. negative) quantity.
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tax and market intervention in a simplified specification that permits a tractable analysis
of optimal mechanisms in the presence of multidimensional heterogeneity. The simplified
framework features an intensive-margin choice of two commodities: a good x, which is
singled out for potential redistributive market intervention, and a numeraire c, which can
be thought of as an aggregate consumption good. Agents have utilities that are linear in
consumption and labor supply. There is a continuum of taste types, but ability is a binary
characteristic, with low-ability agents unable to generate any income.3

While stylized, our setting can be considered a best-case scenario for income taxation: The
optimal income tax always leads to efficient labor market outcomes—which means that
interventions in goods markets are never aimed at reducing distortions in the labor mar-
ket; rather, they directly effect redistribution. Furthermore, rich heterogeneity in tastes for
goods allows us to focus on market-design implications, which have received far less at-
tention than the optimal income tax in the literature following Atkinson and Stiglitz (1976).

We first relax Assumption A1 (no income effects) by supposing that consumption of the
numeraire cannot fall below some subsistence level c. Absent any market intervention,
agents with low ability (and, thus, low income) and high taste must limit their consump-
tion of good x to maintain subsistence. When the designer has redistributive preferences,
the optimal mechanism in this setup looks as follows: First, the income tax redistributes
from rich (high-ability) to poor (low-ability) as much as possible subject to maintaining
the high-ability agents’ incentive to work. Second, the good x is subsidized at low con-
sumption levels and taxed at high consumption levels. The subsidy at low levels of x
creates a (first-order) welfare gain by relaxing low-ability, high-taste agents’ subsistence
constraint—allowing them to consume more of the good. This positive effect dominates
the (second-order) negative distortion of making some low-ability agents over-consume
good x. Meanwhile, the planner can be certain that agents at higher consumption levels
of good x are of high ability, using the fact that their labor income relaxes their subsis-
tence constraint. Thus, the planner can tax purchases of x on the margin to raise addi-
tional revenue (which in turn is used to subsidize the sale of lower amounts of the good at
below-market prices). In particular, if the planner cares only about the low-ability types,
the marginal after-tax price should be set to the price that would be chosen by the revenue-
maximizing monopolist.

The structure of optimal policy—in particular, the involvement of some degree of mar-
ket intervention—is robust to income effects generated by a strictly concave utility from
numeraire. Under concave utility for the numeraire, agents with higher taste for good x

3To make the problem well-defined, we also assume that the planner attaches weakly higher welfare
weights to low-ability agents.
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consume less of numeraire and thus have higher marginal utility of income. By subsidizing
the purchases of low amounts (or low quality) of good x, the planner is able to redistribute
the numeraire towards high-taste, low-ability agents with high marginal utility of income.
If the planner assigns no (or low) welfare weight to high-ability agents, she also taxes high
levels of consumption of good x, which allows her to further redistribute from high-ability
agents to low-ability ones.

Relaxing either Assumption A2 or Assumption A3 creates a correlation between welfare
weights and tastes and, thus, leads to a motive to redistribute across the taste types. These
two cases are technically similar and we discuss them together. The optimal mechanism
takes one of two possible forms, depending on the relative strength of redistributive pref-
erences across abilities and tastes. If the planner is mainly concerned with the “vertical”
inequality between high-ability and low-ability agents, then the redistribution via the in-
come tax is maximized (subject to preserving incentives of high-ability agents to work).
This income redistribution is complemented by a simple market intervention: Purchases of
the good are taxed when agents consuming it have lower welfare weights on average (e.g.,
when there is positive correlation between taste and ability) and subsidized otherwise (e.g.,
when there is negative correlation between taste and ability). If the planner is predom-
inantly concerned with “horizontal” inequality between high-taste and low-taste agents,
then redistribution via the income tax is scaled down to allow for a greater role of redis-
tribution through markets.4 Specifically, the income tax rate is lowered so that high-ability
agents maintain a positive surplus from working. This leaves slack in the downward incen-
tive constraints in ability, allowing the planner to use income-dependent prices for good x.
The planner then offers a means-tested subsidy that is available only to low-income indi-
viduals, which benefits agents with low ability and high taste for the good.

In summary, our analysis suggests that there may be a number of markets for which it
is optimal to complement income tax policies with redistributive market design. The key
intuition for why this happens closely aligns with the motivation for redistributive market
design described above: in many goods markets, it is possible to use agents’ purchasing
behavior to infer welfare-relevant information that an income tax policy has no way of
conditioning on directly. Thus, distortions can be justified in markets where consumption
choices are particularly informative for redistribution, e.g., because they induce significant
income effects (related to A1), directly correlate with welfare weights (related to A2), or
induce correlation with welfare weights through a statistical link to ability (related to A3).
This lends support for some redistributive market interventions used in practice while at

4In fact, when there is no concern about vertical inequality, welfare weights depend only on tastes, and
Assumptions A1 and A3 hold, then the income tax becomes redundant.
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the same time informing the optimal interaction of such policies with the income tax.

The classic Atkinson-Stiglitz framework masks this potential role for redistributive mar-
ket design by implicitly assuming that all of the welfare-relevant information revealed
through market behavior is redundant (because it is already revealed by agents’ labor sup-
ply choices). To illustrate the difference, it is instructive to contrast the reasoning just pre-
sented with the logic of the original Atkinson-Stiglitz theorem in the context of a specific
example, for instance healthcare. In both frameworks, richer agents tend to consume more
healthcare. However, because agents in the model of Atkinson and Stiglitz (1976) only
differ in their earnings ability, high consumption of healthcare is not a signal of need but
merely a direct manifestation of high income. It is thus most efficient to redistribute income
directly by taxing it—any intervention in the healthcare market is an imperfect substitute
for the optimal income tax policy. In practice, demand for healthcare stems from the com-
bination of ability to pay (i.e., income) and need (i.e., taste). Heterogeneity in preferences
makes need one of the factors shaping demand for healthcare in our framework. Thus,
subsidies for low consumption (or low quality) of healthcare services can improve redis-
tribution relative to income tax alone because they endogenously target the low-ability
agents who have a particularly high marginal utility of income—i.e., the agents who are
consuming low amounts of healthcare relative to need.

1.1 Structure of the paper

The remainder of the paper is organized as follows: The next subsection describes the
related literature in market design and public finance. We introduce our framework in
Section 2. Then, in Section 3, we extend the Atkinson-Stiglitz theorem to a setting with
multidimensional heterogeneity under the assumptions A1–A3. In Section 4, we relax each
of the three assumptions in turn and characterize the optimal interaction between the in-
come tax and goods market interventions in the simplified framework. We discuss the
general structure of the optimal mechanism in Section 5, along with some details of the
characterization method. We present brief concluding remarks in Section 6.

1.2 Related literature

Previous work on inequality-aware market design (e.g., Condorelli (2013), Dworczak r⃝
al. (2021), Kang and Zheng (2022), Akbarpour r⃝ al. (2024), Kang (2023)) focused on the
problem of designing a market for a single good. The underlying assumption of that ap-
proach has been that the designer does not control other redistributive tools such as income
taxation—for example, because the designer is a local authority and taxes are set at national
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or regional level, or because political economy frictions block the government from adjust-
ing taxes to the optimal redistributive target. We show that in fact redistribution through
markets may be optimal even when the designer does control income taxation. At the same time,
we show that the interaction between the two tools is non-trivial. For example, the market
intervention may take the form of a means-tested subsidy for consumption or an income-
independent in-kind transfer combined with a tax on top-up consumption; income taxes
may sometimes be lowered in order to incentivize labor provision by high-ability agents
when low-ability agents face lower prices in the goods market.

In a related approach, Kang (2024), Pai and Strack (2024), and Ahlvik et al. (2024) studied
the problem of optimal regulation of consumption of goods generating an externality (e.g.,
pollution) when the designer has redistributive preferences and agents differ in their tastes
for goods. Pai and Strack (2024) extended their results to the case when income taxes
are present but are set exogenously, while Ahlvik et al. (2024) allowed for joint design
of an income tax and a consumption tax. This work showed that Pigovian taxation—a
classical solution to the externality problem—must be appropriately modified to account
for redistributive concerns, and that the income tax alone is not sufficient to address those
concerns in the presence of taste heterogeneity.

We contribute to the multidimensional screening literature by identifying a tractable class
of models with the property that one dimension of the type space is continuous and the
other binary. Models with a similar structure (although in different economic contexts)
have been studied by Fiat et al. (2016) and Li (2021). Our approach to solving the model is
different: Relying on the structure of the problem, we represent the incentive compatibility
constraint across the two types as an outside option constraint, as in the work of Jullien
(2000). We then adopt a recent solution technique developed by Dworczak and Muir (2024)
to solve for the optimal allocation rule for one type, when the other type’s allocation is
fixed. Finally, we use the linearity of the problem to argue that the full solution features
allocation rules that are step functions with a limited number of steps (see Section 5 for the
technical details and additional comments on the related literature).

Our way of modeling the income effect as a subsistence constraint connects our frame-
work to models with budget-constrained agents. Most closely related is the work of Che
et al. (2013) who studied optimal allocation of resources when agents differ in values for
the good and budgets. However, Che et al. (2013) study efficient allocations, without the
redistributive concerns that are the core focus of our work.

Meanwhile, a rich public finance literature has studied the optimal design of income and
consumption taxes under heterogeneity in abilities and preferences. Atkinson and Stiglitz
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(1976) and Mirrlees (1976) set up the overall agenda and introduced the framework that is
now standard in analyzing optimal taxation. Several papers have considered one-dimensional
heterogeneity under which tastes and abilities are perfectly correlated (see, e.g., Cremer
and Gahvari (1998); Golosov et al. (2013); Gerritsen et al. (2020); Scheuer and Slemrod
(2020); Schulz (2021); Hellwig and Werquin (2024)). Within the work that considers mul-
tidimensional settings, Cremer et al. (2001, 2003), Diamond and Spinnewijn (2011) and
Gauthier and Henriet (2018) characterized a nonlinear income tax and linear consumption
(including capital and inheritance) taxes. Moser and Olea de Souza e Silva (2019) con-
sidered agents who are heterogeneous in abilities and in the strength of present-bias, and
studied the optimal (paternalistic) savings policies. Doligalski et al. (2024) studied a setting
in which agents have heterogeneous tastes over food items and showed that a food voucher
program might be optimal. Other related studies, which are not directly concerned with a
treatment of commodities, include those of Golosov and Krasikov (2023) and Spiritus et al.
(2022) on taxation of couples and Boerma et al. (2022) on the optimal bunching patterns in
the labor market with multidimensional sorting. We contribute to this literature by provid-
ing precise conditions under which the income tax is sufficient (and interventions in the
goods markets are redundant) in the multidimensional setting. Furthermore, we provide
a multidimensional framework where the optimal interaction between the income tax and
market interventions is nontrivial—it can involve nonlinear consumption taxes—and can
be characterized in closed form.

There are also related studies that examine desirability of goods market interventions by
using sufficient statistics. Saez (2002) considered a setting where individuals differ in abil-
ities and tastes, and derived conditions under which introducing a small tax on one of the
goods cannot improve social welfare if the policymaker can use a nonlinear income tax.
Ferey et al. (2021) extended the Saez (2002) approach by deriving the formulas for optimal
commodity and income taxes and estimating the relevant sufficient statistics from the data.
Our results are consistent with the conditions in Saez (2002) but provide a complemen-
tary perspective by fleshing out the precise assumptions on the model primitives—rather
than endogenous sufficient statistics—that make commodity distortions redundant, and
by characterizing the optimal interaction between income taxes and market interventions
when these assumptions are not met. Furthermore, our results describe global optimum
with respect to arbitrary mechanisms that could include rationing, quotas or public provi-
sion of goods. By contrast, conditions based on sufficient statistics are necessarily local and
informative about the effects of small tax reforms only.
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2 General Framework

Our framework features agents who are heterogeneous in ability and taste and make op-
timal labor supply and consumption choices, as well as a planner who aims to maximize
social welfare subject to incentive-compatibility and resource constraints.

There is a unit mass of agents who differ in both their taste for goods t ∈ Θt and their earning
ability a ∈ Θa. Types θ = (t, a) ∈ Θt ×Θa = Θ ⊆ R2 are jointly distributed according to F(θ).
Agents have preferences over a vector of goods x ∈RL

+, a numeraire consumption good c ∈R,
and earnings z ∈R+, as given by the utility function

U((c, x, z), (t, a)) = u(c)+ v(x, t)−w(z, a) (1)

which is continuous in (c, x, z) and measurable in (t, a). The separation of consumption
into a vector of goods x and a one-dimensional numeraire c is convenient for studying dif-
ferent cases of the model (e.g., with and without income effects). Conceptually, one can
think of x as a set of goods that are singled out for potential intervention, and of c as aggre-
gating the consumption of all remaining goods into a single composite commodity.5 We
assume that u(c) is strictly increasing. While we do not (at this point) assume specific func-
tional forms for the different components of utility, we do assume that utility is additively
separable between the numeraire c, goods x, and earnings z.6

The planner chooses an allocation rule Y = (c, x, z) ∶ Θ → R×RL+1
+ to maximize the expected

utility of agents weighted with welfare weights λ(θ) ≥ 0. The average welfare weight is
normalized to 1. That is, the social objective is

∫ λ(θ)U(Y(θ), θ) dF(θ). (2)

The planner faces the resource constraint

∫ [z(θ)− c(θ)− k ⋅ x(θ)] dF(θ) ≥ G, (3)

where k ∈RL
++ is the marginal cost of producing goods x in terms of numeraire (or earnings)

and G represents the minimum revenue requirement (which could be negative, represent-
ing exogenous revenue sources).

5Alternatively, c can be interpreted as leftover “money”; such an interpretation is often adopted in quasi-
linear models in which u(c) = c.

6The original Atkinson-Stiglitz theorem holds under a more permissive “weak separability” between com-
modities and earnings. We make a stronger assumption on preferences to focus solely on extending the
analysis into a multidimensional setting.
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The planner does not observe individual agents’ types. Thus, the mechanism must satisfy
the standard incentive compatibility (IC) constraints

U(Y(θ), θ) ≥ U(Y(θ′), θ), ∀θ, θ′ ∈ Θ. (4)

The constraints (4) prevent agents from misreporting their taste, ability, or both simultane-
ously.

For an agent with consumption levels c (of numeraire) and x (of other goods), let e = c+ k ⋅ x
be the consumption expenditure, evaluated at the marginal costs.

A set of efficient (or undistorted) choices of goods x for an individual with taste type t and
disposable income e is defined as7

X∗(t, e) ∶= arg max
x∈RL+

u(e − k ⋅ x)+ v(x, t). (5)

Intuitively, efficiency requires that, conditional on a given level of total expenditure (equal
to disposable income e), the agent consumes an amount of x that she would have chosen
if all goods were priced at their marginal costs. If x ∉ X∗(t, e), then x is called inefficient (or
distorted). When u(c) = c, the set of efficient choices of x is independent of expenditure e,
and we denote it by X∗(t). We assume that X∗(t, e) is not empty for any (t, e).

3 Baseline: When Interventions in Markets are Redundant

In this section, we establish a baseline result that organizes the rest of the analysis. We
introduce three assumptions that jointly imply that the planner can achieve an optimal
allocation with an income tax alone, without intervening in the goods markets.

Assumption A1. There are no income effects: u(c) = c, ∀c ∈R.

Assumption A2. Welfare weights depend only on ability: λ(t, a) ≡ λ̄(a).

Assumption A3. Ability and tastes are statistically independent: F(t, a) ≡ Ft(t)Fa(a), where Ft

and Fa denote the marginal distributions.

For the following result, we also assume existence of an optimal mechanism (which could
be established under standard assumptions).

7Throughout the paper, our use of the term efficiency is always consistent with the usual definition of Pareto
efficiency: There is no other feasible allocation that makes all agents weakly better off and a strictly positive
mass of agents strictly better off.
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Theorem 1. Under Assumptions A1–A3, there is an optimal mechanism that induces an efficient
choice of goods x, and can be decentralized with a competitive goods market and a (possibly nonlin-
ear) income tax.

3.1 Intuition

Theorem 1 can be understood as a generalization of the Atkinson-Stiglitz result to settings
with multidimensional heterogeneity. The intuition is straightforward from the three as-
sumptions: Assumptions A1 and A2 together imply that the planner wants to redistribute
between agents with different abilities, but not between agents with identical abilities and
different tastes. By Assumptions A1 and A3, meanwhile, agents’ willingness to pay for
goods is uninformative regarding (i.e., statistically independent of) ability. Thus, distort-
ing goods choices does not help to distinguish ability types—and hence, has no value for
the redistributive objective; hence, there is no reason to distort the goods market.

Note the Assumption A1 (no income effects) plays two separate roles: it is critical both for
the lack of direct redistributive concerns along the taste dimension and for the indepen-
dence of ability and willingness to pay. If income effects were present, then an agent’s
marginal social welfare weight (which is proportional to λ(θ)u′(c(θ))) would be endoge-
nous to their spending on x (and, thus, to their taste for x) through its impact on the con-
sumption of the numeraire c. Furthermore, the agent’s willingness to pay would depend
on their income, and hence be correlated with ability.

While Theorem 1 shows that we can recover the Atkinson-Stiglitz result in our multidimen-
sional setting, the intuition just described already suggests what we prove in the sequel:
all three of the assumptions are essentially necessary for the Atkinson-Stiglitz conclusion
to hold. We thus interpret Theorem 1 as in effect revealing three channels through which
intervention in goods markets may become optimal even when nonlinear income tax in-
struments are available.

3.2 Sketch of argument

Before turning to relaxations of the three assumptions, we briefly discuss the proof strategy
we use for Theorem 1, and how it relates to the original Atkinson-Stiglitz theorem.

In the first step of the argument, we consider a relaxed problem in which the planner is
able to directly observe the taste type t. Then, the problem can be solved for each t sepa-
rately, ignoring agents’ incentives to misreport their tastes. For each t, the relaxed problem
becomes a one-dimensional optimal taxation problem in which agents have identical tastes
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over goods x. Thus, the original Atkinson-Stiglitz theorem implies that goods x should be
undistorted, and that redistribution should be conducted via income taxes alone.

In the second step, we show that under our three assumptions, the income tax schedule that
solves the relaxed problem in fact does not depend on the taste type t, and hence is feasible
(and therefore optimal) in the original problem in which the planner does not observe
tastes. This step highlights the key role played by Assumptions A1–A3. The social welfare
function has the same shape for every t: The planner neither conditions welfare weights
on t directly (Assumption A2), nor learns about the distribution of ability a by observing t
(Assumption A3). Moreover, by Assumption A1 (no income effect) taste t does not interact
with the agent’s preferences over disposable income: Total expenditure on goods is the
same for all t; all that changes with t is how disposable income is split between the goods
x and the numeraire c. Consequently, the income tax that solves the relaxed subproblem
does not condition on t even when t is freely observable. While individual consumption of
c and x does depend on t in the relaxed problem, because the allocation is efficient, it can
be implemented in an incentive compatible way by pricing goods at marginal costs and
letting agents make unrestricted consumption choices.

It is instructive to compare our result to the canonical multidimensional screening frame-
work used to study, e.g., nonlinear pricing by a multiproduct monopolist. Rochet and
Choné (1998) showed that in such problems it is typically optimal to distort all dimensions
of the allocation by bunching, i.e., assigning identical bundles of goods to different types.
Perfect separation of types is suboptimal due to the tension between the individual ratio-
nality (or participation) constraints and the second-order incentive constraints. In contrast,
we concluded that the allocation of goods x should never be distorted and, thus, bunching
of different taste types can be easily ruled out.8 This stark difference in conclusions is due
to the absence of individual-rationality constraints in our framework. Indeed, Theorem 1
would fail if such constraints were included and were binding. In particular, if the plan-
ner in our framework wanted to maximize revenue, an individual-rationality constraint
would be needed to make the problem well-defined, and the optimal mechanism would
likely distort all decisions.9

3.3 Extensions

Theorem 1 allows for several noteworthy extensions. First, note that the assumption that
earnings z(θ) are a scalar (say, total earnings) rather than a vector (say, earnings from differ-

8It is sufficient to suppose that x∗(t) is injective, i.e., distinct taste types have distinct efficient choices.
9A Rawlsian planner would choose a mechanism similar to the revenue-maximizing planner (except for

the choice of the lump-sum payment) but Rawlsian preferences additionally violate Assumption A2 because
the worst-off agent has the lowest ability type and the lowest taste type.
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ent activities) is immaterial, as the proof works in either case.10 Moreover, we do not need
to identify all entries of z as “earnings,” per se: some of them could stand for consumption
of commodities for which the agent’s taste depends on (or is correlated with) their ability.
We obtain the following result:

Corollary 1. Suppose that utility of type (t, a) can be written as

u(c)+ v(xt, t)+w(z, xa, a), (6)

where xt ∈ RLt and xa ∈ RLa are two vectors of goods, produced with marginal costs kt ∈ R
Lt
++ and

ka ∈ RLa
++. Under Assumptions A1–A3, the optimal mechanism induces an efficient choice of goods

xt, and can be decentralized with a competitive market for goods xt and a (possibly nonlinear) tax
that depends on earnings z and consumption of goods xa.

Corollary 1 shows that the logic behind Theorem 1 can be applied to subgroups of goods
markets. If the taste for a subset of goods is uncorrelated with welfare weights and abilities,
then there are no redistributive gains from intervening in markets for those goods.

For another extension, note that in our framework there is no fundamental reason why z
(which, again, could be a vector) is labeled as “earnings” while x is labeled as “goods”;
for the following result, we apply the proof of Theorem 1 while flipping these labels to
examine what happens when welfare weights depend only on tastes and not on ability.

Corollary 2. Suppose that welfare weights depend only on tastes: λ(t, a) ≡ λ̃(t). Under As-
sumptions A1 and A3, the optimal mechanism induces an efficient choice of earnings: z(t, a) ∈
arg maxz′{z′ −w(z′, a)},∀(t, a) ∈ Θ, and can be decentralized with a (possibly nonlinear) tax on
goods x that does not depend on earnings.

When the planner wants to redistribute across the taste dimension but not between agents
with different abilities, tastes and abilities are uncorrelated, and there are no income ef-
fects, it is the income tax that becomes a redundant instrument. In that case, redistribution
should be conducted only by intervening in the goods markets. In this way, we see precise
assumptions under which focusing solely on redistributive market mechanisms—as in the
setting of Dworczak r⃝ al. (2021)—is justified.

4 Main Analysis: Interaction of Income Taxation and Market Design

We now introduce a simplification of our full model under which we can fully characterize
the optimal mechanism in cases when the assumptions of Theorem 1 fail. We assume that

10Solving a relaxed subproblem would be more difficult in the latter case, yet we actually do not need to
explicitly find a solution in order to show that the solution is independent of t0.
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an agent with type θ = (t, a) has a utility function

u(c)+ tx − z
a

,

with c ∈R, x ∈ [0, 1], and z ∈ [0, z̄]. Unless stated otherwise, we assume that

u(c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c c ≥ c,

−∞ c < c.

The interpretation is that c represents numeraire consumption whose level cannot fall be-
low a “subsistence threshold” denoted c. The introduction of a subsistence level for nu-
meraire consumption provides a simple way of breaking the linear-utility assumption that
we used in Theorem 1.11 While this way of modeling the income effect is stylized, it al-
lows us to derive tight predictions about the optimal mechanism; as we discuss later, the
qualitative conclusions continue to hold whenever u(c) is a smooth, strictly increasing, and
concave function.

The variable x represents the level of consumption of a good or commodity; x can thus
represent quantity, quality, or probability of allocation (in case the good is indivisible).
For concreteness, we will refer to x as “quality.” Note that we normalize the maximal
quality of x to be 1 (which is convenient if we wanted to interpret x as probability). All
individuals have the same preferences over goods that comprise the numeraire c, but they
differ (through the taste parameter t) in their marginal rates of substitution between c and
x. Our specification also assumes a linear disutility function for generating earnings z, and
imposes a finite bound z̄ on earnings.

For tractability, we assume that the ability type is binary: a ∈ {l, h}. We call agents with
a = h the high-ability types, and agents with a = l the low-ability types. We let µa denote the
mass of agents with ability type a. We assume that it is efficient for high-ability workers
to work, h > 1, and that low-ability workers are effectively unable to work, l = 0 (our
arguments apply as long as low-ability agents are sufficiently unproductive).

Taste types t are distributed according to a cumulative distribution function (cdf) Fa with
strictly positive, absolutely continuous densities fa, for a ∈ {l, h}, supported on the same
interval [0, t̄]. The assumption that the lowest type t is 0 is convenient because it implies

11The utility function can be seen as a limiting form (as β →∞) of a concave utility function for consump-
tion:

uβ(c) =
⎧
⎪⎪
⎨
⎪⎪
⎩

c c ≥ c,
(1− β)c + βc c < c.
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that—without loss of generality—the lowest taste type will only consume the numeraire,
which allows us to interpret ca(0) as the lump-sum transfer to group a.

Letting λa(t) ≡ λ(t, a), the objective function of the planner is to maximize

∑
a∈{l, h}

µa ∫
t̄

0
λa(t) (ca(t)+ txa(t)−

za(t)
a
) dFa(t), (7)

over ca(t) ≥ c, za(t) ∈ [0, z̄], and xa(t) ∈ [0, 1], subject to the incentive-compatibility con-
straint,

ca(t)+ txa(t)−
za(t)

a
≥ ca′(t)+ txa′(t′)−

za′(t′)
a

,∀t, t′ ∈ [0, t̄],∀a, a′ ∈ {l, h} . (8)

We continue to assume that the average welfare weight λ̄l on low-ability agents is weakly
larger than the average welfare weight λ̄h on high-ability agents. The resource constraint
is

∑
a∈{l, h}

µa ∫
t̄

0
(za(t)− ca(t)− kxa(t)) dFa(t) ≥ G. (9)

To avoid trivial cases, we assume that k ∈ (0, t̄), and that G is low enough that there exist
feasible allocations at which all agents’ utilities are finite. Under this assumption, it is
without loss of generality to restrict attention to allocations such that ca(t̄) ≥ c—we refer
to this constraint as the “subsistence constraint.” (Note that in an incentive-compatible
mechanism, if ca(t̄) ≥ c, then ca(t) ≥ c for all t).

4.1 Pareto efficiency

The following lemma pins down the key condition for an efficient allocation of goods in
our specification with subsistence constraints.

Lemma 1. The allocation (za(t), ca(t), xa(t)) is efficient if and only if the resource constraint (9)
holds with equality and, for almost all t,

zh(t) = z̄ and zl(t) = 0,

xa(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 t ≥ k, ca(t) > c

∈ [0, 1] t ≥ k, ca(t) = c

0 otherwise

. (10)

The properties of an efficient allocation in our setting are straightforward given the linear-
utility model. For agents above the subsistence level, the taste type t is equal to their
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willingness to pay (WTP) for the good, and efficiency requires that these agents consume
the good if and only if their WTP is above marginal cost. However, for agents whose
numeraire consumption is at the subsistence level c, WTP is not uniquely well-defined.
Intuitively, agents at the subsistence constraint have a rate of substitution t for buying
slightly less of the good, and a rate of substitution 0 for buying slighlty more of the good
(since this would shift their numeraire consumption below subsistence). Consequently, for
an agent at the subsistence constraint who has taste type t, any level of consumption of the
good consistent with WTP being between 0 and t is Pareto efficient.12

In a direct mechanism, there is no notion of a “price” of the good; the price concept is
nevertheless useful when thinking about distortions in the allocation.

Definition 1. For an incentive-compatible mechanism (za(t), xa(t), ca(t)), we define the per-unit
price for a good with (strictly positive) quality q ∈ Im(xa) faced by ability type a as

pa(q) ∶=
ca(0)− ca(x−1

a (q))
q

. (11)

Intuitively, the numerator of (11) is equal to the total payment that any type t consuming
quality q (i.e., q = xa(t)) must be making, compared to a type 0 who does not consume the
good at all. Dividing by q turns the total payment into the per-unit price. The following
simple lemma confirms that our definition of a per-unit price coincides with its intuitive
meaning.

Lemma 2. If an incentive-compatible mechanism (za(t), xa(t), ca(t)) is efficient, then for any
a ∈ {l, h} and any strictly positive q ∈ Im(xa),

pa(q) = k.

Unsurprisingly, Pareto efficiency in our setting requires that all agents face a per-unit price
for the good equal to its marginal cost. This result is convenient because we will often
be able to characterize distortions in the goods market in terms of prices diverging from
marginal cost.

12For further intuition, we may imagine approximating the utility function for numeraire consumption
with a smooth concave function u(c), with u′(c) = 1 for all c ≥ c; under this approximation, WTP would be
uniquely defined by t/u′(c) and efficiency would require that xa(t) = 1 if and only if t/u′(c) ≥ k. In the limit,
t/u′(c)would be discontinuous at c = c, with a right limit of t and a left limit of 0.
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4.2 Preliminary results

We first show a simple lemma stating that redistribution via income tax does not conflict
with efficiency.

Lemma 3. In any optimal mechanism, labor supply is efficient: zh(t) = z̄, zl(t) = 0, ∀t ∈ [0, t̄].

Lemma 3 confirms our earlier assertion that we study the best-case scenario for income
taxation: labor markets remain efficient even under strong redistributive motives.

To provide intuition for further analysis, it is instructive to consider the benchmark case in
which ability is observed, and the subsistence constraint is not binding—then, it is optimal
to offer quality 1 to agents with ability a at a price p⋆a that (assuming an interior solution)
must satisfy

p⋆a = k + (λ̄a −Λa(pa))γa(p⋆), a ∈ {l, h}, (12)

where Λa(p) is the average welfare weight on agents with ability a and taste type above
p, and γa(p) = 1−Fa(p)

fa(p) is the inverse hazard rate.13 Intuitively, agents with taste type t ≥ p⋆a
are buying the good; thus, if the designer attaches a higher-than-average welfare weight
to buyers of the good, then it is optimal to subsidize the price of the good below marginal
cost. In the opposite case, it is optimal to tax purchases of the good. Only when welfare
weights do not depend on taste—that is, under Assumption A2—is the efficient allocation
optimal.

The logic just described makes it intuitive that relaxing Assumption A2 would result in op-
timal mechanisms incorporating distortions in the goods market. However, we show that
in fact—with unobserved ability and income effects—relaxing of any of the Assumptions
A1-A3 leads to a violation of the conclusion of Theorem 1 (i.e., violations of the Atkinson-
Stiglitz conclusion). We focus on economic intuitions when presenting our results in this
section—we explain the underlying proof technique and its broader relation to multidi-
mensional screening in Section 5.

4.3 Optimality of market distortions under income effects

We first consider the case in which Assumptions A2 and A3 of Theorem 1 hold but the
utility for numeraire consumption is no longer linear. We investigate the properties of op-
timal mechanisms when the subsistence constraint binds for the low-ability agents. In the

13This follows, for example, from the analysis of Akbarpour r⃝ al. (2024) by replacing their fixed-supply
assumption with a constant marginal cost.
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following subsection, we show that the main results are robust to introducing strictly con-
cave utility from numeraire. Whenever Assumption A3 holds, we write just “F” (without
a subscript) to denote the (common across the two ability types) cdf of the distribution of
taste types.

Theorem 2. Suppose that Assumptions A2 and A3 hold. Furthermore, assume that 1−F(t)
f (t) is non-

increasing, that F(t)
f (t) is non-decreasing, and that

µhz̄ (1− 1
h
)−G < k + c and

z̄
h
≥ t̄. (13)

There exists an optimal mechanism in which:

1. Every agent chooses between purchasing

• quality ql of the good at a per-unit price pl < k or

• (maximal) quality 1 of the good at a price plql + ph(1− ql), where ph > k;

if λh = 0, then ph coincides with the revenue-maximizing price.

2. Every agent chooses to work or not, with each unit of earnings taxed at the rate 1− 1/h.

3. Every agent receives a lump-sum transfer equal to c + plql.

Under the optimal mechanism, all agents face the same price schedule in the goods market.
However, the allocation of goods is not efficient: The mechanism offers a low-quality good
at an average price strictly below marginal cost. Low-ability agents of sufficiently high
taste type consume the subsidized option. The mechanism allows high-ability agents—
who work and therefore have higher disposable income—to “top up” their consumption
of the good; the price charged for the additional units is strictly above marginal cost, and
thus can be understood as extracting revenue from wealthier agents (which then subsidizes
the lump-sum payment). In fact, when the welfare weight on high-ability agents is 0, the
top-up price ph is equal to the revenue-maximizing (monopoly) price.

Because the lump-sum payment is equal to subsistence consumption plus plql—which is
exactly the price of the subsidized good—we can also interpret the mechanism as giving
the agents the choice between receiving the good with quality ql in-kind, or opting for a
higher cash transfer. Note that high-ability agents are also allowed to use the subsidy just
like low-ability agents are. This is because income taxes are set at a maximal level that
extracts all surplus from working (i.e., the net wage is just enough to cover the cost of
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labor supply). If high-ability agents were excluded from the subsidy, given the tax regime,
some of them would choose not to work (which is not optimal by Lemma 3). At the same
time, though, the subsidy is phased out by charging agents a higher marginal price for
topping up. This combination of prices achieves the screening effect that underlies the
main results of Dworczak r⃝ al. (2021): high-ability agents with strong enough preferences
for the good choose to top up; because low-ability agents never do so, market selection in
effect identifies the higher-ability agents with particularly strong preferences for the good,
and extracts surplus from them to redistribute via the lump-sum transfer.

The following intuition helps explain why it is optimal to lower the price of the low-quality
good below marginal cost. Suppose instead that the good is offered at marginal cost k.
This means that low-ability agents with t ≥ k spend all their disposable income (equal to
the lump-sum payment) on the good with quality q < 1 which puts their consumption c at
subsistence level. Consider now a slight perturbation of the price to k− ϵ. This perturbation
has a negative effect due to allocative inefficiency (some agents with t < k consume the
good); however, this effect is of second-order in ϵ (it is an order-ϵ distortion for an order-ϵ
mass of agents). The perturbation also has a positive effect, which is that all low-ability
agents with types t ≥ k now consume qϵ more units of the good; this is a first-order effect
since even inframarginal taste types enjoy an increase in utility at the order of ϵ. Thus, for
small ϵ, the positive effect dominates the negative effect, and it is optimal to lower the price
below marginal cost.

For additional illustration, consider an example in which the good is treatment for a med-
ical condition. The taste type captures whether (and to what extent) treatment is needed.
When the cost of the treatment is high enough, agents with low income must substantially
decrease their consumption of other goods to afford it—pushing them below the subsis-
tence constraint in the language of our model. Thus, even if the designer has no inherent
preference for redistribution to agents who are sick (i.e., welfare weights do not depend
on the taste type) and the likelihood of getting sick is unrelated to ability (taste type and
ability types are independent), she still wants to redistribute towards agents who consume
treatment because of the associated income effects; the planner achieves this by subsidizing
the price of treatment below its marginal cost.14

14The same story could be told by replacing treatment for a disease with consumption of a luxury good
(perhaps a yacht), in which case the appeal of the intuition is lost. The easiest way to distinguish between
these two cases (essential healthcare versus yachts) is to think of the planner maximizing a strictly concave
transformation of agents’ utilities. In such a framework, the level of utility matters for the marginal social
welfare weight. An agent consuming yachts could have high marginal utility from them but since their
overall utility is presumably already very high, their contribution to social welfare would be small, turning
off the effect described here. In contrast, an agent in need of medical treatment who chooses low-quality
healthcare is likely to have low consumption of other goods as well, and hence both high marginal utility and
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Interpreted through the lens of the income effect, the mechanism subsidizes the consumption of
the low-quality good because consuming the good is a signal of high marginal value of consumption.
Low-ability agents who consume the good must be at subsistence level, which means that
the effective social welfare weight on their consumption is high. It is thus optimal to give
more resources to them—and if high-ability agents have enough demand to top up their
consumption, taxing that consumption helps finance the subsidy.

Finally, we comment on the regularity assumptions in Theorem 2: First, the monotonicity
of hazard rates is a mathematically restrictive assumption but its only role in the proof
is to rule out ironing and ensure that first-order conditions are sufficient.15 With ironing,
as we explain in Section 5, the optimal mechanism may need to offer additional options
to high-ability agents, which complicates the exposition without adding new economic
insight. The condition µhz̄ (1− 1

h) − G < k + c, by contrast, is economically important: it
states that the economy does not have enough resources to put all agents strictly above the
subsistence level without raising at least some revenue (the left side of (13) is production
minus government expenditure, and the right side is the minimal lump-sum transfer that
makes low-ability agents capable of consuming at subsistence level while still affording
the good priced at marginal cost). If (13) fails, then the subsistence constraint is moot, and
optimality of efficient provision of the good (pricing at marginal cost) follows from our
Atkinson-Stiglitz theorem (Theorem 1) because no agent’s consumption induces income
effects in equilibrium (effectively, restoring Assumption A1). Finally, the assumption z̄

h ≥ t̄
ensures that the subsistence constraint is slack for high-ability agents—it says that high-
ability agents are sufficiently productive relative to the strongest possible taste for buying
the good. This assumption is not crucial; if the subsistence constraint is binding also for
some high types, the solution is qualitatively very similar, with the main difference being
that high-ability agents choose between not buying, consuming ql, or consuming some
qh < 1.16

4.3.1 Robustness to curvature in utility functions

A potential concern with Theorem 2 is that its conclusion could be driven by the stylized
form of the income effect, modeled for tractability as a subsistence constraint. Suppose
instead that preferences take the general form from equation (1) with the functions u, v,

low overall utility, resulting in high redistribution-worthiness. In our current framework, we can replicate
that logic by making welfare weights a function of tastes (i.e., by relaxing Assumption A2).

15The condition is stronger than usual because the analog of virtual surplus in our analysis is endogenous
to the Lagrange multiplier on the subsistence constraint—see the proof in Appendix A for details.

16We omit this solution for brevity, but note that it could be easily reproduced following a similar proof
strategy; see Proposition 2 that covers the structure of the optimal mechanism in the general case.
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and −w assumed smooth and strictly concave. While a full characterization of the optimal
mechanism is no longer attainable in that case, we find that the main features of the optimal
mechanism from Theorem 2 are maintained. Here, we summarize and discuss the findings,
while the formal results are relegated to Appendix B.

The optimal mechanism under strictly concave utility functions has the following features.
First, consumption of good x is distorted for at least some types—except for degenerate
cases, the conclusion of the Atkinson-Stiglitz theorem fails. Second, if the consumption of
the low-ability agents is distorted, then it must be distorted upwards, meaning that it is
optimal to subsidize good x for them.17 Third, if the planner does not value the utility of
high-ability types, then it is optimal to charge a revenue-maximizing price for any addi-
tional unit of x on top of what the low-ability agents consume. Thus, optimal mechanism
under curvature in the utility function preserves the main features of the optimum under
the subsistence constraints.

To build intuition, notice that agents with high taste type choose relatively higher x and
lower c, resulting in higher marginal utility for numeraire u′(c). The income effect thus
creates a positive correlation between purchases of x and the marginal utility u′(c). The
optimal mechanism exploits this correlation by subsidizing purchases of good x to support
individuals with high marginal utility. Note that preference heterogeneity is crucial for
this effect to be present. Agents with different tastes endogenously differ in their marginal
value for the numeraire, which creates a motive for redistribution that cannot be addressed
through the income tax alone.

The proof strategy closely follows the intuition. If both the low- and high-ability agents of
the same (interior) taste consume an undistorted amount of x, then the planner can always
improve the social objective by distorting their allocations of x upwards. Such change is
beneficial because it allows to redistribute numeraire from lower taste (and lower u′(c))
agents to higher taste (and higher u′(c)) agents. When the welfare weight on the high-
ability types is zero and they consume more x than the low-ability types, the planner can
further improve by distorting the allocation of the high-ability types downwards, which
allows to extract the maximal revenue. In that case only the downward incentive constraint
in taste binds for high-ability agents and, thus, the solution coincides with the solution to
the one-dimensional monopolistic screening problem.

17To prove this property, we assume that ironing is not required in the optimal mechanism.
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4.4 Optimality of distortions with no income effect

Next, we assume that utilities are linear in numeraire consumption (taking c = −∞ in our
specification), restoring Assumption A1, and examine what happens when we relax As-
sumptions A2 and/or A3 of Theorem 2. Because both relaxations have a similar effect, we
exposit them together.

Even though we assumed that the designer cares more about the low-ability agents than
high-ability agents on average, we cannot conclude that the price for the high-ability agents
is weakly higher than for low-ability agents. For example, it may be optimal to post a lower
price for high-ability agents if their distribution of taste types is lower (in an appropriate
sense) than that for the low-ability agents (because low-ability agents are not able to mimic
high-ability agents, that type of solution is feasible). We consider this case to be less eco-
nomically interesting,18 so we rule it out by assuming

∀t ∈ [0, t̄], (1−Λh(t))γh(t) ≥ (1−Λl(t))γl(t), (14)

where again Λa(t) is the average welfare weight on agents with ability a and taste type
above t, and γa(t) = 1−Fa(t)

fa(t is the inverse hazard rate.

To interpret condition (14), note that if the welfare weights on low- and high-ability agents
are the same, then the assumption states that the distribution of high-ability agents’ tastes
is higher—in the hazard-rate order—than that of low-ability agents. Analogously, if the
taste distribution in the two different groups is the same, then the assumption states that
the welfare weights on low-ability agents are weakly higher than on high-ability agents,
conditional on the taste type exceeding any threshold.

Theorem 3. Suppose that Assumption A1 and inequality (14) hold, and that

(t − k − (1−Λh(t))γh(t)) fh(t) (15)

is non-decreasing whenever it is negative. Then, there exists an optimal mechanism that takes one
of two forms:

1. Labor income is taxed at a rate 1− 1/h and all agents face the same price p for quality 1 of the
good satisfying

p = k + (1−Λ(p))γ(p),
18Note that this class of solutions features inefficient allocation of the good, by definition, since the two

groups face a different price for the good, and at most one of those two prices can be equal to marginal cost.
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where Λ(p) is the average welfare weight on all agents with taste type t above p, and γ is the
inverse hazard rate of the unconditional distribution of taste; or

2. Labor income is taxed at a rate strictly lower than 1 − 1/h, all agents choose whether to pur-
chase quality 1 of the good, agents who work face a price ph, and agents who do not work face
a price pl, where

k + (1−Λh(ph))γh(ph) ≥ ph > pl ≥ k + (1−Λl(pl))γl(pl).

Without income effects, the optimal mechanism in our framework becomes simple. In
particular, (after ironing is ruled out by the regularity conditions), it is always optimal to
sell the good to each group at a single price. If income taxes are set to the maximal level,
then the prices are in fact the same for both groups; when income taxes leave high-ability
agents with a strictly positive surplus from working, the price for the good faced by high-
ability agents is higher than the price faced by low-ability agents.

The assumption that (15) is non-decreasing whenever it is negative is precisely what rules
out ironing. Like with our anti-ironing condition from Theorem 2, this regularity condition
is mathematically restrictive, but not essential for our results. When it is relaxed, we cannot
rule out the optimality of offering an additional option of a low-quality good to high-ability
agents at a low per-unit price in case 1. Intuitively, in case 1, in order to maintain incentive-
compatibility, the designer must ensure that high-ability agents face weakly better terms
of trade in the goods market than low-ability agents. At the same time, our assumption
(14) states that it is not optimal to offer a strictly lower price for the good to high-ability
agents. If it is optimal to set a single price for high-ability agents, then it follows that the
price offered to low- and high-ability agents is the same. However, it may sometimes be
optimal to offer two prices to high-ability agents: a low-quality good with a per-unit price
lower than pl and a high-quality good with a per-unit price higher than pl. Even in this
case, though, allocation in the goods market is inefficient.19

In case 1, efficiency in the goods market is generically suboptimal when either Assumption
A2 or A3 fails. Indeed, efficiency in the goods market is only optimal if the average welfare
weight on agents buying the good, Λ(p), is equal to the unconditional average of 1—and
when welfare weights depend directly on the taste type (i.e., when Assumption A2 is re-
laxed), Λa(t) (and hence its average over a) will typically diverge from 1. Moreover, even
if welfare weights do not depend on the taste type directly, Λ(p) might deviate from 1 if
taste types are correlated with ability types (as occurs when we relax Assumption A3).

19Analytical expressions for these prices are not generally available, which is why we focus on the case in
which ironing can be ruled out.
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For intuition, suppose that λ̄h = 0, so that the designer only cares about low-ability agents.
It is then straightforward to show that

Λ(p) < 1 ⇐⇒
1− Fl(p)

µl(1− Fl(p))+ µh(1− Fh(p))
< 1 ⇐⇒ Fl(p) > Fh(p).

That is, the good is taxed if low-ability agents have a lower distribution of the taste type
(in first-order stochastic dominance sense), and is subsidized if low-ability agents have a
higher distribution of the taste type. In both cases, the designer uses the market for the
good to transfer more resources from high- to low-ability agents, relying on the statistical
dependence between taste and ability. Note the role played by taste heterogeneity: Even
though the designer cannot take away more resources from all high-ability agents directly
(their income is already taxed as much as is possible while still satisfying the incentive
constraints), she can transfer more resources away from high-ability agents with high taste
by taxing the good (when high-ability agents have higher taste on average) or from high-
ability agents with low taste by lowering the lump-sum transfer and subsidizing the good
instead (in the case that low-ability agents have higher taste on average).

In case 2, the allocation of the good is never efficient because high-ability agents face a
strictly higher price than low-ability agents (hence, it cannot be that both prices are equal
to marginal cost). The mechanism can be implemented as a means-tested subsidy for the
good (in the sense that the subsidy is only available to agents who have no labor income).
For this mechanism to be incentive-compatible, labor income cannot be taxed maximally,
which is why the tax rate is strictly below 1 − 1/h. For intuition, recall that if the ability
type were observed, the designer would like to implement ability-dependent prices given
by (12). However, to implement ph > pl when ability is not observed, the designer must
provide enough rents to high-ability types to maintain incentive compatibility—and the
larger the gap ph − pl, the larger the rent that high-ability agents must receive in the labor
market. This creates a trade-off and implies that the optimal prices ph and pl will be closer
together than the benchmark prices p⋆h and p⋆l given by (12).

It remains to discuss the determinants of which of the two candidate optimal mechanisms
is used. The result below shows that both mechanisms are sometimes optimal, and the
choice between them depends on whether the designer has a strong motive to redistribute
across ability types.

Proposition 1. Under the assumptions of Theorem 3, suppose additionally that

(t − k − (1−Λl(t))γl(t)) fl(t)
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is non-decreasing whenever it is positive. Parametrize λh(t) ≡ λ̄hλ̄(t) for some λ̄(t) with mean 1.
Then, fixing all parameters other than λ̄h, there exists a cutoff value λ0

h ∈ [0, 1] such that mecha-
nism 1 from Theorem 3 is optimal if λ̄h < λ0

h and mechanism 2 is optimal if λ̄h > λ0
h.

Moreover, for any λ̄h < 1, mechanism 1 is optimal when µl is sufficiently small; and for λ̄h = 1,
mechanism 2 is optimal whenever inequality (14) is strict for interior t.

Intuitively, when welfare weights depend on both ability and taste—directly, or indirectly
through statistical correlation—the designer wants to condition redistribution on both di-
mensions. The gap between λ̄l and λ̄h can be seen as a measure of the strength of vertical
redistributive preferences. When these preferences for redistribution are very strong, the
designer uses mechanism 1 from Theorem 3, which achieves the maximal level of redistri-
bution across ability types. The goods market may still be distorted but the redistribution
through the goods market merely “complements” the redistribution through the income
tax. On the other hand, when vertical redistributive preferences are not that strong, it be-
comes optimal to let high-ability workers retain some surplus from working in order to
redistribute more effectively through the goods market.

5 General Structure of the Optimal Mechanism

In this section, we explore the general structure of optimal mechanisms in the simplified
setting introduced in Section 4. In particular, we uncover the reasons for the relatively
simple mechanism form identified in Theorems 2 and 3, and sketch the proofs of these
results. The main goal here is to explain several key technical ideas behind our construction
that could be useful in studying other similar multidimensional screening problems.

We center our discussion in this section around the following result that predicts the form
of the optimal mechanism in the absence of any regularity conditions:

Proposition 2. In the framework of Section 4, there always exists an optimal mechanism in which:

1. Low-ability agents consume one quality of the good: xl(t) ∈ {0, ql}, where ql ∈ (0, 1];

2. High-ability agents consume at most three distinct qualities of the good: xh(t) ∈ {0, qi, ql, qh},
where 0 ≤ qi ≤ ql ≤ qh;

3. If the subsistence constraint does not bind, then the highest quality consumed is 1: If cl(t̄) > c,
then ql = qh = 1, and if ch(t̄) > c, then qh = 1;

25



4. High-ability agents either (i) receive a post-tax wage equal to the cost of labor provision but
face a weakly better average price for the good consumed by low-ability agents, or (ii) receive a
post-tax wage strictly higher than the cost of labor provision but face a weakly higher average
price for the good consumed by low-ability agents: i.e., whenever ql ∈ Im(xh), either

(a) ch(0)− z̄
h = cl(0) and ph(ql) ≤ pl(ql) , or

(b) ch(0)− z̄
h > cl(0) and ph(ql) > pl(ql).

In an optimal mechanism, low-ability agents face a simple choice (recall that they do not
work, by Lemma 3). They receive a lump-sum transfer, equal to cl(0), and decide whether
to buy the good with quality ql at a per-unit price of pl, or spend their entire disposable
income on the numeraire (agents with taste type above pl will decide to do the former).
Whether ql = 1 or ql < 1 depends on whether the subsistence constraint binds: ql < 1 can
only be optimal if high-taste low-ability agents consume at the subsistence level.

High-ability agents face a potentially more complicated choice. They choose from up to
three distinct quality levels. Proposition 2 asserts that there are two possible cases: Either
(i) Labor income is taxed maximally, so that high-ability agents are indifferent between
working or not, in which case they face (weakly) lower goods market prices than low-
ability agents face; or (ii) labor taxation leaves a strictly positive surplus from working, in
which case high-ability workers face strictly higher prices in the goods market than low-
ability agents face.

For intuition, recall that the planner cares more (on average) about the welfare of low-
ability agents, and that low-ability agents cannot mimic high-ability agents. In case (i),
because labor income is taxed maximally, it is not possible to offer better prices in the mar-
ket to low-ability agents without violating incentive compatibility. Optimal prices often
turn out to be independent of income under this fully extractive income tax. In case (ii),
high-ability agents receive strictly positive surplus from working, which they would lose
if they pretended to be of low ability; thus, in this case, it is feasible (and optimal) to offer
strictly better prices to low-ability agents.

The preceding intuition also helps explain why up to three quality levels are needed for
high-ability agents. When ql < 1, some intermediate-taste high-ability agents may con-
sume the same quality as low-ability agents when the downward IC constraint (in ability)
is binding. Additionally, the higher quality qh > ql may be needed because high-ability
agents have more disposable income, so their subsistence constraint is relaxed compared
to same–taste-type low-ability agents. Finally, the lowest quality level qi may be needed if
the optimal solution requires ironing—roughly, if the planner’s objective function is non-
monotone in the taste type, it may be preferable to satisfy the downward IC constraint (in
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ability) by offering a low-quality good at a low price to high-ability agents (this possibility
is ruled out by the regularity conditions imposed in Theorems 2 and 3).

5.1 Sketch of argument

The proof of Proposition 2—which is then specialized to prove Theorems 2 and 3—is rela-
tively involved but can be decomposed into several steps, most of which use familiar ideas.
First, we reduce the problem to maximizing the welfare function over allocation rules xl(t)
and xh(t) that are monotone in t, using the envelope formula to express consumption of
the numeraire in terms of the allocation rules and ability-specific lump-sum transfers. We
use the resource constraint to pin down the lump-sum transfer to the low-ability agents.

Second, we argue that the subsistence constraints can only bind for the highest-taste type
within each ability level. This is intuitive, as agents with the same ability share the same
disposable income, by Lemma 3. This observation allows us to incorporate all subsis-
tence constraints into the objective function via a pair of Lagrange multipliers, after we
parametrize the highest quality level consumed by each ability type. In the final stage
of the construction, we optimize over these highest quality levels; intuitively, the highest
quality level is 1 (the maximal consumption of good x) if the subsistence constraints for the
given ability type turn out to be slack, but it could be interior otherwise.

Third, we argue that the incentive constraint preventing low-ability agents from pretend-
ing to have high ability is slack (as a consequence of Lemma 3). The opposite constraint
could bind but—conditional on misreporting ability—high-ability agents find it optimal to
report their taste truthfully. This key step reduces the incentive constraints in our multidi-
mensional model to two standard one-dimensional constraints (within each ability level)
and an outside-option–like constraint for the high-ability agents: High-ability agents must
receive a minimal utility level pinned down by the allocation to low-ability agents with
the corresponding taste type. Fixing the allocation rule for low-ability agents, our prob-
lem thus becomes a standard one-dimensional screening problem with a type-dependent
outside option (as in Jullien (2000)).

Fourth, we fix the allocation rule for low-ability agents and solve for the optimal allocation
rule for high-ability agents. We rely on an ironing technique that extends the analysis
of Myerson (1981) to problems with type-dependent outside options. The extension we
use was recently introduced by Dworczak and Muir (2024): the key take-away is that the
allocation rule for high-ability agents is linear in their outside option, i.e., in the allocation
rule for low-ability agents.
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Fifth, we maximize the Lagrangian over the allocation rule for low-ability agents, account-
ing for how that choice affects the optimal allocation rule for high-ability agents. As a
consequence of the previous step, this problem is linear, with no constraints. By a standard
argument, the optimal allocation rule for low-ability agents is therefore a posted price for
a single quality level (pinned down by the subsistence constraint).

Sixth, we show that the allocation rule for high-ability agents derives its simple structure
from the cutoff allocation rule for low-ability agents. Up to two additional quality (and
price) levels may be needed for high-ability agents: a lower quality may be introduced by
the ironing procedure, while a higher quality level may be required due to a more permis-
sive subsistence constraint—consistent with the informal discussion of Proposition 2. We
also establish the validity of the Lagrangian approach by showing that the subsistence con-
straints can always be satisfied by choosing appropriate highest quality levels consumed
by the two ability types.

Finally, part 4 of Proposition 2 follows from the optimal choice of a lump-sum payment
to high-ability agents. Intuitively, the planner faces a trade-off: She can satisfy the en-
dogenous outside-option constraint for high-ability agents (created by the allocation to
low-ability agents) by either (i) increasing the allocation to high-ability agents, or (ii) giv-
ing those agents a higher lump-sum payment (implemented in an incentive-compatible
way as a reduction in income taxes). The generalized ironing procedure that we deploy to
solve for the optimal allocation rule for high-ability agents determines how to optimally
use options (i) and (ii), leading to the two cases in part 4 of Proposition 2.

5.2 Literature notes

As the proof sketch makes clear, the tractability of our model relies crucially on the simpli-
fying assumption of a binary ability type (with an incentive constraint that can only bind
in one direction). A mathematically similar structure arises in the so-called “FedEx prob-
lem” in which agents differ in their (continuous) value for receiving a package, as well as
a discrete (possibly binary) deadline by which they need to receive it: Relying on duality
techniques, Fiat et al. (2016) derived the structure of the revenue-maximizing mechanism
in such an environment; Saxena et al. (2018) showed that the number of prices required
for full optimality grows exponentially with the number of “deadline” types (which are
analogous to ability types in our framework).20

Ahlvik et al. (2024) solved a multidimensional screening problem (assuming no bunching
in the solution) in a model with a binary (and deterministic) choice in the goods market.

20In unreported simulation results, we have also found that our optimal mechanism grows increasingly
complex with more ability types, although the economic insights from the binary case carry through.
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We instead assume that productivity is binary but allow for continuous types and choices
in the goods market. This makes the two papers complementary: we obtain a richer design
of the goods market (e.g., with several levels of consumption, rationing etc.), while Ahlvik
et al. (2024) obtain richer predictions about the optimal income tax schedule. Additionally,
the techniques used to solve the respective problems are different (Ahlvik et al. (2024) rely
on first-order conditions using a perturbation approach and optimal-control methods).

A natural benchmark for our analysis is that of Dworczak r⃝ al. (2021), who solved an
analogous market-level redistribution problem without integrating income taxation. The
optimality of offering a single quality to low-ability agents (and at most three quality levels
to high-ability agents) is a consequence of the assumption of constant marginal cost in
our framework; if, instead, we had assumed a fixed supply of goods as Dworczak r⃝ al.
(2021) did, then an additional quality level might be needed in the optimal mechanism.21

(Avoiding this additional complexity in the optimal mechanism is why we decided to work
with a fixed–marginal cost model, which also happens to be closer to the original work of
Atkinson and Stiglitz (1976).) With a fixed supply and linear utilities as in the setting of
Dworczak r⃝ al. (2021), rationing (interior quality level) is always inefficient. In our model,
rationing may be efficient for agents whose numeraire consumption is at subsistence—and
instead, inefficiency is manifested by the price diverging from marginal cost.

6 Concluding Remarks

We investigated the joint problem of income taxation and goods market design in a mech-
anism design framework, and showed that goods market design plays an important role
in balancing equity and efficiency under redistributive preferences. While our paper is
far from the first to point out the limitations of the celebrated Atkinson-Stiglitz theorem,
we believe that—by characterizing the optimal mechanism in closed form—-it shows the
value of goods market interventions in a particularly salient way. Several decades after
the original work of Atkinson and Stiglitz (1976), conventional economic wisdom seems to
have embraced the idea of using income taxes rather than goods market interventions to
redistribute; it would appear that this intuition needs to be revisited, and more research is
needed to understand whether it constitutes good policy advice under realistic scenarios.

21Mathematically, the Dworczak r⃝ al. (2021) way of modeling scarcity is closely related to ours because a
fixed supply constraint results in a Lagrange multiplier that enters the problem in the same way as a constant
marginal cost. However, the need to satisfy the supply constraint may result in the optimal mechanism being
a convex combination of different maximizers of the Lagrangian (see, e.g., Doval and Skreta (2024)).
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A Proofs

A.1 Proof of Theorem 1

Consider an equivalent formulation of the problem in which the planner chooses consump-
tion expenditure e(θ) ∶= c(θ) + k ⋅ x(θ) rather than numeraire c(θ). Let α ≥ 0 denote the
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Lagrange multiplier on the resource constraint. The planner’s problem, expressed as a
Lagrangian, reads

max
(e,x,z)∶Θ→R×RL+1+

∫ λ(θ)U((e(θ)− k ⋅ x(θ), x(θ), z(θ)), θ) dF(θ)+ α∫ [z(θ)− e(θ)] dF(θ) (16)

subject to incentive constraints

U((e(θ)− k ⋅ x(θ), x(θ), z(θ)), θ) ≥ U((e(θ′)− k ⋅ x(θ′), x(θ′), z(θ′)), θ), ∀θ, θ′ ∈ Θ. (17)

Note that that α > 0. Otherwise, the objective could be improved while respecting the
incentive constraints by increasing e(θ) such that u(c(θ)) changes by a constant for all θ.

Consider a relaxed subproblem where we focus on the allocation rule for taste type t0 ∈ Θt

in isolation and drop the incentive constraints requiring the agents to be truthful about
their taste. We retain the incentive constraints ensuring that agents truthfully reveal their
ability. Denote the cdf of ability conditional on taste t0 as Fa∣t(a ∣ t0). The planner chooses
an allocation rule (e, x, z) ∶ Θa →R×RL+1

+ to maximize the Lagrangian of the subproblem:

L(t0) ∶= ∫ λ(t0, a) [u(e(a)− k ⋅ x(a))+ v(x(a), t0)−w(z(a), a)]+ α[z(a)− e(a)] dFa∣t(a ∣ t0)

(18)

subject to the incentive constraints in ability that must hold for all a, a′ ∈ Θa:

u(e(a)− k ⋅ x(a))+v(x(a), t0)−w(z(a), a) ≥ u(e(a′)− k ⋅ x(a′))+v(x(a′), t0)−w(z(a′), a). (19)

In this subproblem agents are heterogeneous only in ability, and utility is weakly-separable
in commodities (including numeraire c and goods x) and earnings. Thus, following the
logic of the Atkinson-Stiglitz theorem, consumption choices should not be distorted. More
formally, consumption choices (c, x) are incentive-separable as defined by Doligalski et al.
(2024); then, by the application of their Lemma 1, for any allocation that distorts the choice
of (c, x), there exists an alternative allocation which does not distort it, provide all agents
with the same utility as before, and generates more revenue to the planner.22 Since α is
strictly positive, the value of the Lagrangian increases. Thus, the solution to the subprob-
lem involves an efficient allocation of x.

By Assumption A1, the set of efficient choices of x is independent of expenditure and, thus,

22Note that Doligalski et al. (2024) define an undistorted choice with an expenditure-minimisation problem,
while we do it with a utility-maximization problem. A strictly increasing u(c) over c ∈ R guarantees the
duality of the two approaches.
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ability; we consider a solution in which all ability types receive the same vector of goods:
x(a) = x∗(t0) ∈ X∗(t0),∀a. Plug in the allocation of goods x∗(t0) into the Lagrangian and
simplify by applying Assumptions A1–A3; the Lagrangian becomes

L(t0) = ∫ (λ̄(a)[e(a)−w(z(a), a)]+ α[z(a)− e(a)]) dFa(a)+K(t0) (20)

where K(t0) ∶= v(x∗(t0), t0)− k ⋅ x∗(t0) is an additive term that depends only on taste.23 The
incentive constraints simplify to

e(a)−w(z(a), a) ≥ e(a′)−w(z(a′), a), ∀a, a′ ∈ Θa. (21)

The reformulated subproblem depends on the taste type t0 only via the additive constant
in the Lagrangian. Thus, if (ẽ, z̃) denotes the solution to the relaxed subproblem for taste
t0, then (ẽ, z̃) also solves the relaxed subproblem for any other taste type t.

We claim that (ẽ, z̃) combined with the efficient choice of goods x∗(t) ∈ X∗(t),∀t, solves the
original (unrelaxed) problem. To prove it, we need to show that all incentive constraints
from the original problem are satisfied. Indeed, for all (t, a), (t′, a′) ∈ Θ,

ẽ(a)− k ⋅ x∗(t)+ v(x∗(t), t)−w(z̃(a), a) = [ẽ(a)−w(z̃(a), a)]+ [v(x∗(t), t)− k ⋅ x∗(t)]

≥ [ẽ(a′)−w(z̃(a′), a)]+ [v(x∗(t′), t)− k ⋅ x∗(t′)]

= ẽ(a′)− k ⋅ x∗(t′)+ v(x∗(t′), t)−w(z̃(a′), a),

where the inequality follows from the incentive constraint of the relaxed subproblem and
the fact that the allocation of x is efficient. Since the solution to the relaxed problem satisfies
all constraints of the original (non-relaxed) problem, it also solves the original problem.

Now we will show that the optimal allocation rule can be decentralized with a competitive
goods market (pricing at marginal costs) and an income tax. Let T̃ ∶ R+ → R∪ {∞} be a tax
on earnings satisfying T̃(z̃(a)) = z̃(a)− ẽ(a) for all a ∈ Θa and T̃(z) =∞ for z /∈ z̃[Θa].

An individual facing the income tax T and goods prices k obtains the following utility

Udec(T, (t, a)) ∶= max
(x,z)∈RL+1+

z − T(z)− k ⋅ x + v(x, t)−w(z, a). (22)

23Note that this step of the proof relies on additive separability of utility in consumption choices and
earnings.
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Then, Udec(T̃, (t, a)) corresponds to the utility implied by the optimal direct mechanism:

Udec(T̃, (t, a)) = max
z∈z̃[Θa]

{z − T̃(z)−w(z, a)}+max
x∈RL+
{v(x, t)− k ⋅ x} (23)

=max
a′∈Θa
{ẽ(a′)−w(z̃(a′), a)}+ v(x∗(t), t)− k ⋅ x∗(t) (24)

= ẽ(a)−w(z̃(a), a)+ v(x∗(t), t)− k ⋅ x∗(t). (25)

Here, we first separated the maximization over x and z, and dropped the earnings levels
that are taxed prohibitively. Second, we changed the control variable from z ∈ z̃[Θa] to
a′ ∈ Θa, applied the definition of T̃, and noted that the allocation of goods is efficient. The
final equality follows from the incentive compatibility of the optimal allocation.

A.2 Proof of Lemma 1

It is immediate that labor supply must satisfy zh(t) = z̄ and zl(t) = 0 in any efficient alloca-
tion. Since we restricted attention to allocations in which agents’ utilities are finite, we can
assume that ca(t) ≥ c for all a and t. It is also clear that the resource constraint (9) must be
binding in any efficient allocation.

We will first prove that condition (10) is necessary. Suppose condition (10) fails for a posi-
tive mass of agents such that ca(t) > c and t ≥ k. Find ϵ > 0 such that a strictly positive mass
of agents have ca(t) ≥ c + ϵk and xa(t) ≤ 1− ϵ; then, decrease their ca(t) by ϵk, and increase
their xa(t) by ϵ. This leaves the resource constraint unaffected and raises the utility of these
agents (almost all of them strictly), which contradicts Pareto efficiency. Condition (10) does
not restrict xa(t) for agents with ca(t) = c. Finally, suppose that condition (10) fails for a
positive mass of agents such that ca(t) = c and t < k. Then, an analogous argument as for
the first case shows that the utility of a positive mass of such agents can be improved.

We will now prove that condition (10) is sufficient. Fix an allocation satisfying condition
(10) and suppose that there is a Pareto improvement. Notice that there cannot be a Pareto
improvement for agents for whom ca(t) > c unless these agents consume more resources
in total (understood as a decrease in the left-hand side of constraint (9)). Hence, if there
is a Pareto improvement, there is also a Pareto improvement in which only agents with
ca(t) = c are affected. Similarly, the utility of agents with ca(t) = c and t < k can only be
increased by giving them more resources, so we can find a Pareto improvement among
agents with ca(t) = c and t ≥ k. Fix such a Pareto improvement, and denote the set of
affected agent types by A. Let ∆ca(t) ≥ 0, ∆xa(t) denote the change in their allocation of
c and x in the Pareto improvement. It must be that ∆ca(t) + t∆xa(t) ≥ 0 for all (t, a) ∈ A,
with a strict inequality for a positive mass of agents within A. To preserve the resource
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constraint, it must be that, E[∆ca(t) + k∆xa(t)∣A] ≤ 0, where the expectation is taken over
(a, t) conditional on A. We have

0 ≥ E[∆ca(t)+ k∆xa(t)∣A] ≥ E[∆ca(t)+ t min{∆xa(t), 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

∣A] > 0,

where the last inequality is strict because ∆ca(t)+ t∆xa(t) > 0 for a positive mass of agents
in the set A. Contradiction.

A.3 Proof of Lemma 2

First, suppose that ca(t̄) > c (which implies that, in an incentive-compatible mechanism,
ca(t) > c for all t). Then, Pareto efficiency requires that xa(t) = 1{t≥k}. Fixing a, incentive
compatibility implies that ca(t) jumps downward at t = k by k, and is constant otherwise.
In particular, only quality q = 1 is offered. Plugging this into the definition of the per-unit
price, we obtain that pa(1) = k, as required.

Next, let us assume that ca(t̄) = c. By incentive-compatibility, there must exist a type t⋆

such that, for t ∈ [t⋆, t̄], ca(t) = c, while for types t < t⋆, ca(t) > c. For types t < t⋆, Pareto
efficiency requires that xa(t) = 1{t≥k}. For types t ≥ t⋆, incentive compatibility requires
that xa(t) = xa(t̄), while Pareto efficiency requires that t⋆ ≥ k. However, if t⋆ > k, then the
resulting xa(t)would not be monotone on [0, t̄], which contradicts incentive-compatibility.
We conclude that xa(t) = xa(t̄)1{t≥k}. The rest of the proof is analogous to the previous case.

A.4 Proof of Lemma 3

It is without loss of generality to assume that zl(t) = 0 (given the welfare objective function
and the fact that l = 0). Thus, we only have to solve for the earnings choice of high-ability
agents. We will prove that it is optimal to choose zh(t) = z̄ for all t. Suppose that it is
not the case. Then, we can adjust all high types’ allocations so that their zh(t) increases
to z̄ and their ch(t) increases just enough to make their overall utility unchanged. This
adjustment does not affect the objective function and relaxes the resource constraint (as
well as one of the IC constraints). Since the relaxation of the resource constraint is strict, and
increasing the lump-sum payment increases social welfare, it is always strictly preferred to
set zh(t) ≡ z̄.

A.5 Proof of Proposition 2

Consider the incentive constraints (8). Since all high-ability agents work (by Lemma 3),
low-ability agents cannot mimic the high-ability agents. By standard arguments, their in-
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centive constraint can be represented as a monotonicity constraint on the allocation xl(t)
and an integral condition pinning down consumption cl(t) (up to a lump-sum payment).
Letting Tl ∶= cl(0) denote the lump-sum payment to low-ability agents, we have:

xl(t) is non-decreasing, cl(t)+ txl(t) = Tl +∫
t

0
xl(τ)dτ.

The constraint cl(t) ≥ c can only bind for the highest taste type t = t̄, since the above
representation implies that cl(t) is non-increasing in t. Therefore, the constraint cl(t) ≥ c
for all t ∈ [0, t̄] is equivalent to requiring

Tl +∫
t̄

0
xl(t)dt − t̄xl(t̄) ≥ c.

The incentive constraint for high-ability agents preventing them from misreporting their
taste type alone leads to a similar representation (let Th ∶= ch(0)):

xh(t) is non-decreasing, ch(t)+ txh(t) = Th +∫
t

0
xh(τ)dτ, Th +∫

t̄

0
xh(τ)dτ − t̄xh(t̄) ≥ c.

However, we must additionally satisfy the incentive constraint that high-ability agents do
not want to mimic one of the low-ability types, which can now be represented as

Th +∫
t

0
xh(τ)dτ − z̄

h
≥ Tl +∫

t′

0
xl(τ)dτ + (t − t′)xl(t′),∀t, t′ ∈ [0, t̄].

Note that

∫
t′

0
xl(τ)dτ + (t − t′)xl(t′) ≤ ∫

t

0
xl(τ)dτ

by the monotonicity of xl(t) in t, and hence—conditional on misreporting the ability type—
it is optimal to report the taste type truthfully. Thus, the constraint simplifies to

Th +∫
t

0
xh(τ)dτ − z̄

h
≥ Tl +∫

t

0
xl(τ)dτ,∀t. (26)

Next, using the above formulas for ca(t), and after a few standard transformations (inte-
gration by part), we can rewrite the objective function (up to a term that is constant in the
remaining choice variables) as

∑
a∈{l, h}

µa (λ̄aTa + µa ∫ Λa(t)γa(t)xa(t)dFa(t)) ,
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where γa(t) = (1− Fa(t))/ fa(t) is the inverse hazard rate and Λa(t) = E [λa(t̃)∣t̃ ≥ t, a] is the
average welfare weight on types above t, conditional on ability a. Similarly, the resource
constraint (9) can be rewritten as

µhz̄ ≥ G + ∑
a∈{l, h}

µa (Ta +∫
t̄

0
(k − Ja(t)) xa(t)dFa(t)) ,

where Ja(t) = t −γa(t) is the virtual surplus function, conditional on ability a.

We will reparameterize the problem by denoting T = Tl and ∆T = Th − z̄
h − T. That is, T

is the lump-sum payment to all agents, and ∆T is the additional monetary payment that
high-ability agents receive on top of the lump-sum transfer enlarged by a compensation
for disutility of labor. By the incentive constraint (26), ∆T ≥ 0. Intuitively, when ∆T = 0, the
post-tax wage received by high-ability agents who work is just enough to offset the disutil-
ity from labor that they incur (corresponding to case (a) in point 4 of Proposition 2); when
∆T > 0, high-ability agents enjoy a strictly positive surplus from working (corresponding
to case (b) in point 4 of Proposition 2).

We summarize the progress made so far by restating the full problem as

max
xh(t), xl(t), T, ∆T≥0

T + µhλ̄h∆T + ∑
a∈{l, h}

µa ∫
t̄

0
Λa(t)γa(t)xa(t)dFa(t),

subject to

xl(t) is non-decreasing, T ≥ c + t̄xl(t̄)−∫
t̄

0
xl(τ)dτ,

xh(t) is non-decreasing, T + z̄
h
+∆T ≥ c + t̄xh(t̄)−∫

t̄

0
xh(τ)dτ,

∆T +∫
t

0
xh(τ)dτ ≥ ∫

t

0
xl(τ)dτ,∀t.

µhz̄ (1− 1
h
) ≥ G + T + µh∆T + ∑

a∈{l, h}
µa (∫

t̄

0
(k − Ja(t)) xa(t)dFa(t)) .

Let us parameterize the problem by imposing an additional constraint xl(t̄) ≤ x̄l and xh(t̄) ≤
x̄h, and optimizing separately over x̄l and x̄h. Intuitively, the need to bound the allocation
rule from above by a number less than 1 may come from the subsistence constraint. Note
that, as long as constraint (26) and the subsistence constraint hold for the low-ability agents,
we have

T + z̄
h
+∆T ≥ c + t̄xh(t̄)−∫

t̄

0
xh(τ)dτ + z̄

h
+ t̄(xl(t̄)− xh(t̄)).

It follows that we can increase xh(t̄) to be at least at the level of xl(t̄) while preserving the
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subsistence constraint for the high-ability agents; thus, it is without loss of generality to
assume that x̄h ≥ x̄l. (This argument also establishes that the subsistence constraint is slack
for high-ability agents if z̄/h ≥ t̄.)

We solve the problem by introducing two Lagrange multipliers, ηl ≥ and ηh ≥ 0, on the
subsistence constraints for the low- and high-ability agents, respectively. The resource
constraint must hold with equality at the optimal mechanism, which allows us to substitute
T in the objective function. The Lagrangian—fixing x̄l and x̄h—is then maximized over
non-decreasing xl(t) and xh(t), as well as ∆T ≥ 0,

max
xl(t)≤x̄l , xh(t)≤x̄h, ∆T≥0

∑
a∈{l, h}

µa ∫
t̄

0
[Λa(t)γa(t)+

ηa

µa fa(t)
+ (1+ ηl + ηh)(Ja(t)− k)] xa(t)dFa(t)

+ (µhλ̄h + ηh − (1+ ηl + ηh)µh)∆T,

subject to a single constraint

∆T +∫
t

0
xh(τ)dτ ≥ ∫

t

0
xl(τ)dτ,∀t.

First, we will derive the optimal xh(t) and ∆T holding fixed xl(t). Let

ϕh(t) ∶= (Λh(t)γh(t)+
ηh

µh fh(t)
+ (1+ ηl + ηh)(Jh(t)− k))µh fh(t),

ψ ∶= µhλ̄h + ηh − (1+ ηl + ηh)µh,

so that this auxiliary problem can be written succinctly as

max
xh(t)≤x̄h, ∆T≥0∫

t̄

0
ϕh(t)xh(t)dt +ψ∆T

subject to

∆T +∫
t

0
xh(τ)dτ ≥ ∫

t

0
xl(τ)dτ,∀t.

Note that we must have ψ ≤ 0 as otherwise the problem would not have a solution.

The above problem is a linear mechanism design problem with a type-dependent outside
option constraint pinned down by the allocation rule for the low-ability agents. Such a
problem can be solved using existing techniques.
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Lemma 4. [Dworczak and Muir (2024)]. Define

Φh(t) = ∫
t̄

t
ϕh(τ)dτ and Φ̄h(t) = co(Φh)(t), ϕ̄h(t) = −Φ̄′h(t),

where co stands for the concave closure of a function. Let t0 be defined as the smallest solution to
ϕ̄h(t0) = ψ (t0 = 0 if ϕ̄h(t) > ψ for all t), and let t1 be defined as the largest solution to ϕ̄h(t1) = 0
(t1 = t̄ if ϕ̄h(t) < 0 for all t). (Note that t0 ≤ t1 because ϕ̄h(t) is non-decreasing.) Then,

max
xh(t)≤x̄h, ∆T≥0

{∫
t̄

0
ϕh(t)xh(t)dt +ψ∆T} = ∫

t1

t0
ϕ̄h(t)xl(t)dt + x̄h ∫

t̄

t1
ϕ̄h(t)dt +ψ∫

t0

0
xl(t)dt.

Moreover, the optimal solution is given by

∆T⋆ = ∫
t0

0
xl(t)dt,

x⋆h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ t0,

xl(t) t ∈ [a, b] for every maximal [a, b] such that Φh ≡ Φ̄h on [a, b],
∫

b
a xl(τ)dτ

b−a t ∈ (a, b) for every maximal (a, b) such that Φh < Φ̄h on (a, b),

x̄h t ≥ t1.

Explaining Lemma 4 is beyond the scope of this paper.24 The important take-aways for
our purposes are that the problem of choosing the optimal xh(t) for a fixed xl(t) admits
a closed-form solution characterized by two cutoffs, t0 and t1, and (possibly) a number
of ironing intervals. Ignoring the possibility of ironing (formally, ironing is not needed if
ϕh(t) is monotone), the intuition for the cutoffs t0 and t1is as follows. The designer chooses
an allocation rule for high-ability agents to maximize welfare subject to delivering a certain
minimal level of utility to high-ability agents, where the lower bound on utility comes from
the possibility of mimicking a low-ability type. It is better to give a cash transfer ∆T⋆ to
types t ≤ t0 than to let these types consume the allocation for the low-ability agents. Note
that ∆T⋆ > 0 only if low-ability agents of taste type below t0 consume the good: xl(t) > 0 for
some t < t0. These considerations (after endogenizing xl(t)) ultimately determine whether
or not high-ability agents receive strictly positive surplus from working. For types t ∈
[t0, t1], it is optimal to satisfy the constraint by letting them consume what the low-ability
agents with analogous taste types consume (again, this is further complicated if ironing is
needed). Finally, types t ≥ t1 should consume the maximal amount x̄h regardless of the
outside option (here, we rely on the fact that x̄h ≥ x̄l ≥ xl(t) for all t).

24The reader is referred to Dworczak and Muir (2024) for a discussion.
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Note that the definition of t0 and t1 does not depend on xl(t). The closed-form expression
for the maximized objective function thus allows us to maximize over xl(t) in the next step.
Let

ϕl(t) ∶= [Λl(t)γl(t)+
ηl

µl fl(t)
+ (1+ ηl + ηh)(Jl(t)− k)]µl fl(t).

Then, the problem of maximizing over xl(t) (assuming that xh(t) and ∆T are chosen opti-
mally for any xl(t), as described by Lemma 4), becomes (fixing x̄l)

max
xl(r)≤x̄l

∫
t̄

0
ϕl(t)xl(t)dt +∫

t1

t0
ϕ̄h(t)xl(t)dt + x̄h ∫

t̄

t1
ϕ̄h(t)dt +ψ∫

t0

0
xl(t)dt.

This problem is linear in xl(t) with no additional constraints (other than monotonicity of
xl(t)), so there exists an optimal solution that takes the form xl(t) = x̄l1{t≥tl} for some
tl (formally, these are the extreme points of the set of non-decreasing functions on [0, t̄]
bounded below by 0 and above by x̄l.)

Finally, consider maximizing the Lagrangian over x̄h and x̄l (at the optimal solution, with-
out loss of generality, xl(t̄) = x̄l and xh(t̄) = x̄h):

max
x̄l , x̄h
{x̄l ∫

t̄

tl
ϕl(t)dt + x̄l ∫

t1

t0
ϕ̄h(t)dt + x̄h ∫

t̄

t1
ϕ̄h(t)dt +ψx̄l(t0 − tl)+ − ηl x̄l − ηh x̄h} . (27)

The problem is linear. There are two possibilities. First, the subsistence constraint could be
slack for types a, in which case ηa = 0 and x̄a = 1. Moreover, if the subsistence constraint
is slack for low-ability agents, then it is also slack for high-ability agents. Second, the
subsistence constraint could bind (for low-ability types, or both types). In that case, ηa is
set so that the coefficient on x̄a in the Lagrangian (27) is zero; this allows us to choose x̄a to
satisfy the subsistence constraint with equality (by assumption, we restricted attention to
cases in which we can satisfy the subsistence constraint when agents do not consume the
good, so there is some intermediate level of consumption that satisfies the constraint with
equality). In either case, we conclude that the solution described above is a solution to the
original problem for some choice of ηl and ηh.

We are now ready to finish the proof of Proposition 2. Part 1 follows from the fact that the
optimal xl(t) is a cutoff allocation rule (we set ql = x̄l). Part 2 follows from the following
observation: Since the optimal xl(t) is a cutoff allocation rule, the optimal allocation rule
xh(t)—as predicted by Lemma 4—can take on at most one value, which we call qi, other
than 0, ql = x̄l, and qh ∶= x̄h. Specifically, qi ∈ (0, ql) if and only if tl ∈ (a, b) ⊆ (t0, t1) for
some maximal interval (a, b) such that Φh < Φ̄h on (a, b): then, qi = ql(b − tl)/(b − a). In
this sense, qi is a result of ironing that is required when the objective function ϕh(t) is not
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monotone (so that Φh lies below its concave closure Φ̄h on some interval). Part 3 follows
from the analysis of Lagrange multipliers ηl and ηh above. Finally, to prove part 4, let us
separately analyze the form of the optimal mechanism when (a) tl ≥ t0, (b) when tl < t0.

In case (a), by Lemma 4, ∆T⋆ = 0. This means that Th = Tl + z̄/h or ch(0) − z̄/h = cl(0). By
incentive compatibility, pl(ql) = tl since type tl is the cutoff type consuming quality ql. To
determine the average prices paid by high-ability type, we consider three cases:

(i) If t1 ≤ tl, then xh(t) = x̄h(t)1{t≥t1}, so Im(xh) = {0, x̄h} and ph(qh) = t1 ≤ tl = pl(ql). If
ql ∈ Im(xh), then it follows that ql = qh and hence ph(ql) ≤ pl(ql).

(ii) If t1 > tl and no ironing is required (qi is not offered), then it follows that xh(t) =
xl(t) = 1{t≥tl} for all t ∈ (t0, t1), and hence pl(ql) = ph(ql) = tl.

(iii) If t1 > tl but ironing is required, then we have xh(t) = qi for t ∈ [a, b), xh(t) = ql for
t ∈ [b, t1), and xh(t) = x̄h for t ≥ t1, for some t0 ≤ a ≤ tl ≤ b ≤ t1. In this case, quality qi

must be offered at the average price a, and type b must be indifferent between buying
quality qi at a per-unit price of a, or buying ql at a per-unit price of ph(ql):

(b − a)qi = (b − ph(ql))ql ⇐⇒ tl = ph(ql).

We conclude that in all cases when ql is offered to high-ability agents (ql ∈ Im(xh)), we have
ph(ql) ≤ pl(ql).

In case (b), ∆T⋆ = x̄l(t0 − tl) > 0, by Lemma 4. A further consequence of the lemma is
that—since xl is constant in [t0, t1]—xh must be equal to x̄l on [t0, t1], and hence Im(xh) ⊆
{0, ql, qh}. Since tl < t0, high-ability agents must face a higher per-unit price for consum-
ing ql.

Cases (a) and (b) above thus correspond to the analogous cases in Proposition 2, which
finishes its proof.

A.6 Proof of Theorem 2

We will construct a solution (based on Proposition 2) in which the subsistence constraint is
slack for high-ability agents and binds for low-ability agents (the condition on the aggre-
gate resources in the statement of the theorem ensures that we will be able to verify that
property). Using the notation from the proof of Proposition 2, we set η = ηl and ηh = 0.

First, we prove a technical lemma showing that under our regularity conditions, ironing is
not required in the optimal allocation rule for high-ability agents.
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Lemma 5. Under the assumptions of Theorem 2, the solution described by Lemma 4 does not
involve ironing (ϕh = ϕ̄h in the relevant range).

Proof. Under the current assumptions, we have

ϕh(t) ≡ ((t − k)(1+ η)µh +ψ
1− F(t)

f (t)
) f (t),

ψ = −µh(1+ η − λh),

where λh is the (constant) welfare weight on high-ability agents. We will first show that
ϕh(t) is non-decreasing over [t0, t1], so that ironing is not required in the optimal mecha-
nism, where t0 and t1 are defined by

(t1 − k)(1+ η)µh +ψ
1− F(t1)

f (t1)
= 0,

(t0 − k)(1+ η)µh −ψ
F(t0)
f (t0)

= 0.

(We will later verify that these definitions coincide with the definition in Lemma 4.) Note
that our regularity assumptions imply that t0 and t1 are uniquely defined (recall that ψ ≤ 0).

We need to show that, for t ∈ (t0, t1),

((1+ η)µh +ψγ′(t)) f (t)+ ((t − k)(1+ η)µh +ψγ(t)) f ′(t) > 0.

We know that, in the relevant range,

ψ
F(t)
f (t)

< (t − k)(1+ η)µh < −ψ
1− F(t)

f (t)
.

When f ′(t) > 0, we have

((1+ η)µh +ψγ′(t)) f (t)+ ((t − k)(1+ η)µh +ψγ(t)) f ′(t) > (ψ F(t)
f (t)
+ψ

1− F(t)
f (t)

) f ′(t) > 0.

When f ′(t) < 0, we have

((1+ η)µh +ψγ′(t)) f (t)+((t − k)(1+ η)µh +ψγ(t)) f ′(t) > (−ψ
1− F(t)

f (t)
+ψ

1− F(t)
f (t)

) f ′(t) = 0.

This shows that ϕh(t) is non-decreasing over [t0, t1].

Next, notice that ϕh(t) crosses zero once from below, and hence ϕh(t) ≥ 0 for all t ≥ t1.
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Similarly, we want to show that ϕh(t) ≤ ψ for all t ≤ t0. For t ≤ t0,we have

((t − k)(1+ η)µh +ψ
1− F(t)

f (t)
) f (t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

(t − k)(1+ η)µh −ψ
F(t)
f (t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

⎞
⎟⎟⎟⎟⎟⎟
⎠

f (t)+ψ ≤ ψ.

We have thus shown that ϕh(t) = ϕ̄h(t) over [t0, t1], and moreover that t0 and t1 defined
above coincide with those defined in Lemma 4. It follows that no ironing is needed: For a
fixed xl, the optimal allocation rule for high-ability agents is given by

x⋆h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t < t0,

xl(t) t ∈ [t0, t1),

x̄h t ≥ t1.

Combining Lemma 5 with Proposition 2, we conclude that the optimal solution is param-
eterized by: tl, t0, t1, x̄l (which we keep fixed for now), and x̄h (which we conjecture will
be equal to 1). Note that as long as t0 < tl, the value of t0 does not affect the mechanism
(since xl(t) = 0 for t ≤ tl). Thus, it is without loss of generality to assume that t0 ≥ tl. Under
that assumption, we have ∆T⋆ = x̄l(t0 − tl). The resulting Lagrangian—which is maximized
over tl, t0, and t1—takes the form:

−(1+η) [µh x̄l ∫
t1

t0
(k − J(t)) dF(t)+ µh ∫

t̄

t1
(k − J(t)) dF(t)+ µl x̄l ∫

t̄

tl
(k − J(t)) dF(t)]−ηx̄ltl

−(1−λh+η)µh x̄l(t0− tl)+µlλl x̄l ∫
t̄

tl
γ(t)dF(t)+µhλh x̄l ∫

t1

t0
γ(t)dF(t)+µhλh ∫

t̄

t1
γ(t)dF(t).

(28)

We will argue that t0 = tl in the optimal mechanism. Since we know that t0 ≥ tl, towards
a contradiction, suppose that t0 > tl; then, the first-order conditions for optimal t0 and tl

must hold, which would require (after some transformations, and in particular substituting
λl = (1− µhλh)/µl):

(1+ η)(t0 − k) f (t0)+ (1+ η − λh)F(t0) = 0,

(1+ η)(tl − k) f (tl)+ (1+ η − λl)F(tl) = 0.

The first condition states that ϕh(t0) = ψ, and since t0 is the smallest solution to this equa-
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tion, we know that ϕh(t) < ψ for all t < t0, and thus in particular,

(1+ η)(tl − k) f (tl)+ (1+ η − λh)F(tl) < 0.

But this clearly contradicts the second condition (since λh ≤ λl).

Thus, we have proven that t0 = tl. In particular, ∆T⋆ = 0, so we are in case (a) in part 4 of
Proposition 2. The solution is characterized (up to pinning down x̄l and confirming that
x̄h = 1) by the first-order conditions for optimal t0 and t1:

[(1+ η) (k − J(t0))− h(t0)] f (t0) = η,

(1+ η) (k − J(t1)) = λhh(t1).

We can rewrite the FOCs as
t0 = k −

η

1+ η

F(t0)
f (t0)

.

t1 = k + (1− λh
1+ η

) 1− F(t1)
f (t1)

.

Note that, as long as η > 0, we have t0 < k < t1. In the indirect implementation, the per-unit
price pl = tl = t0 for quality x̄l = ql is thus below marginal cost. The total price ph(1) for the
good with quality 1 must make type t1 indifferent:

t1 − ph(1) = ql(t1 − pl) Ô⇒ ph(1) = plql + t1(1− ql),

which verifies point 1 of Theorem 2 if we define ph = t1 (note that ph is the revenue-
maximizing price if λh = 0). Point 2 of Theorem 2 follows from the fact that ∆T⋆ = 0
(the income tax makes high-ability agents indifferent between working or not). Finally, the
binding subsistence constraint for low-ability agents implies that cl(0) = c + plql, verifying
point 3.

It remains to verify that (i) the subsistence constraint binds for low-ability agents (so that
η > 0) and (ii) the subsistence constraint is slack for high-ability agents (which will verify
our conjecture that ηh = 0 and x̄h = 1).

The resource constraint states that

µhz̄ (1− 1
h
) = G + T − µh(1− x̄l)(t1 − k)(1− F(t1))− x̄l(t0 − k)(1− F(t0)).

Towards a contradiction, suppose that η = 0. Then, it is optimal to set x̄l = 1, t0 = t1 = k, and
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the resource constraint becomes

µhz̄ (1− 1
h
) ≥ G + T.

Since low-ability agents do not work but can afford to buy one unit of the good at price k,
it must be that T ≥ c + k. Thus, we must have

µhz̄ (1− 1
h
) ≥ G + c + k,

which is ruled out by the condition assumed in Theorem 2.

Finally, we make sure that in the solution we have constructed consumption of the high
ability agents exceeds the subsistence level. We know that T = c + t0x̄l. Thus, it suffices to
show that

c + t0x̄l +
z̄
h
≥ c + t0x̄l + t1(1− x̄l) ⇐⇒

z̄
h
≥ t1(1− x̄l).

A sufficient condition is that z̄/h ≥ t̄, which is what we assumed.

A.7 Proof of Theorem 3 and Proposition 1

Since we assumed that

ϕh(t) ≡ (t − k − (1−Λh(t))γh(t)) fh(t)

is non-decreasing whenever it is negative, it follows from Lemma 4 that no ironing is re-
quired to describe the optimal xh(t). Moreover, combining this observation with Proposi-
tion 2, we conclude that the allocation rule xl(t) takes the form 1{t≥tl}, from which it follows
that xh(t) = 1{t≥th}, for some th. It remains to characterize th and tl.

The optimization problem—based on the derivation in the proof of Proposition 2—becomes

max
th, tl

∑
a∈{l, h}

µa ∫
t̄

ta
(Ja(t)− k +Λa(t)γa(t)) dFa(t)− (1− λ̄h)µh(th − tl)+.

The FOCs for an interior solution (in particular, when th ≠ tl) are

FOC th ∶ −(1− λ̄h)1{th≥tl} − (th − k − (1−Λh(th))γh(th)) fh(th) = 0,

FOC tl ∶
µh

µl
(1− λ̄h)1{th≥tl} − (tl − k − (1−Λl(tl))γl(tl)) fl(tl) = 0.

We argue that these conditions can never hold with th < tl. Indeed, assumption (14) guar-
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antees that
t − k − (1−Λl(t))γl(t) ≥ t − k − (1−Λh(t))γh(t).

Thus, we must have th ≥ tl.

We will consider the two cases, (i) th = tl and (ii) th > tl, separately.

In case (i), we immediately obtain that ∆T⋆ = 0 (which means that high-ability agents get
no utility surplus from working or, equivalently, that income is taxed at the rate 1− 1/h per
unit of earnings) and that all agents face the same price p in the market. This price p must
be equal to th = tl. Since the same mechanism is offered to low- and high-ability agents,
we can use the unconditional distribution F of taste types. Let us also denote by Λ(p) the
unconditional (over ability types) expectation of the welfare weight on agents with taste
type above p. The FOC for that price p is

p − k − (1−Λ(p))γ(p) = 0.

which gives us the formula from point 1 in Theorem 3.

In case (ii), we conclude that ∆T⋆ > 0, so that high-ability agents receive a strictly positive
surplus from working. In this case, the two FOCs must hold, and thus (using the fact that
λ̄h ≤ 1)

th − k − (1−Λh(th))γh(th) ≤ 0,

tl − k − (1−Λl(tl))γl(tl) ≥ 0.

This gives us the string of inequalities on the prices from point 2 in Theorem 3.

Finally, we prove Proposition 1. Under the additional assumptions we made, the first-
order conditions described above are necessary and sufficient (under the convention that
the equality becomes an inequality at the boundaries 0 or t̄). Therefore, mechanism 2 is
optimal if there exists a solution to the system of equations

−(1− λ̄h)− (th − k − (1− λ̄hΛ̄(th))γh(th)) fh(th) = 0,

µh

µl
(1− λ̄h)− (tl − k − (1−Λl(tl))γl(tl)) fl(tl) = 0,

that satisfies th > tl. Our goal is to show that if a solution exists for some λ̄h, then it must also
exist for all higher λ̄h. In the second condition, if λ̄h becomes larger, then µh

µl
(1 − λ̄h) gets

smaller, so the term (tl − k − (1−Λl(tl))γl(tl)) fl(tl)must also get smaller to satisfy the con-
dition (since we assumed that this term is non-decreasing whenever it is positive, we can
lower tl until the condition holds or tl hits 0). Because tl gets lower, we preserve the con-
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straint that tl < th (as long as we can show that th weakly increases). In the first condition, if
λ̄h becomes larger, then −(1− λ̄h) gets larger, so the term (th − k − (1− λ̄hΛ̄(th))γh(th)) fh(th)
must get larger (less negative) to satisfy the condition. By the monotonicity assumptions,
we can always increase th until the first-order condition holds (or th hits t̄). However, since
the whole term (th − k − (1− λ̄hΛ̄(th))γh(th)) fh(th) increases when λ̄h increases, we have
to make sure that th overall increases (to make sure that we preserve the constraint th > tl).
By the implicit function theorem

∂th

∂λ̄h
= 1− Λ̄(th)(1− Fh(th))

∂
∂th
((th − k − (1− λ̄hΛ̄(th))γh(th)) fh(th))

≥ 0

as long as

1 ≥ Λ̄(th)(1− Fh(th)) = ∫
t̄

th
λ̄(t)dFh(t).

But

∫
t̄

th
λ̄(t)dFh(t) ≤ ∫

t̄

0
λ̄(t)dFh(t) = 1,

so this always holds.

We conclude that there exists a cutoff λ0
h such that mechanism 2 is optimal if λ̄h > λ0

h and
mechanism 1 is optimal if λ̄h < λ0

h. (Note that it is possible that λ0
h ∈ {0, 1} in which case

one of the mechanisms might never be optimal.)

Finally, when λ̄h < 1, when µl is low enough, the term µh
µl
(1− λ̄h) becomes arbitrarily large,

so the second condition cannot hold and thus mechanism 1 must be optimal. On the other
hand, when λ̄h = 1, mechanism 2 is optimal as long as inequality (14) is strict for all inte-
rior t.

B Results under curvature in the utility function

In this section, we examine the robustness of findings from the model with subsistence con-
straints (Theorem 2) to a utility function that is smooth and strictly concave in numeraire.
We also allow for a strictly concave utility from the good x and a strictly convex disutility
from working. Specifically, assume the utility of type (t, a) is given by

u(c)+ v(x, t)− (1a=hw(z)+ 1a=lw̄z) (29)

that is twice continuously differentiable in all arguments and where: u(c) is strictly in-
creasing, strictly concave and either c ∈R or c ≥ 0 and limc→0 u′(c) =∞; v(x, t) is concave in
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x ∈R+ and satisfies the single-crossing property: vxt(x, t) > 0 for all t ∈ [0, t̄] and x ≥ 0; w(z)
is strictly increasing and strictly convex in z ∈ R+ and w̄ is high enough that low-ability
types neither work nor prefer to mimic high-ability types in the optimum. The rest of the
model is the same as in Section 4.3.

B.1 Preliminary results

No earnings distortion. Define the efficient choice of earnings of high-ability agents given
numeraire c as z∗(c) ∶= w′−1(u′(c)). Suppose there exists type (t, h)with distorted earnings:
zh(t) ≠ z∗(ch(t)). Perturb zh(t) towards z∗(ch(t)) and adjust ch(t) to keep the utility of this
type constant. The perturbation improves the planner’s objective: It relaxes the resource
constraint and preserves all incentive constraints, since high-ability types can be mimicked
only by other high-ability agents, who are indifferent to this alteration. Thus, earnings of
high-ability types are undistorted at the optimum.

Given this result, it will be convenient to define the utility from numeraire net of disutility
from working as

ũ(c) ∶= u(c)−w(z∗(c)).

Summarizing incentive constraints. For brevity, we will refer to an incentive constraint
as IC. Take some t, t′ ∈ Θt and assume that the IC of type (t, h)mimicking (t, l) and of (t, l)
mimicking (t′, l) are satisfied. Then

u(ch(t))+ v(xh(t), t)−w(zh(t)) ≥ u(cl(t))+ v(xl(t), t) ≥ u(cl(t′))+ v(xl(t′), t). (30)

Comparing the left-hand and the right-hand sides, we see that type (t, h) has no incentives
to mimic (t′, l). Thus, provided that other ICs are satisfied, the ICs corresponding to joint
deviations in ability and taste are redundant.

Denote the utility level of type (t, a) by Ua(t) = u(ca(t)) + v(xa(t), t) − 1a=hw(zh(t)). The
downward ICs in ability can be written as:

Uh(t) ≥ Ul(t),∀t ∈ Θt. (31)

Regarding the ICs in taste dimension, given the single-crossing assumption, it is standard
to summarize them as

Ua(t) = Ua(0)+∫
t

0
vt(xa(t), t) dt, ∀t ∈ Θt, a ∈ {h, l}, (32)
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combined with a requirement that xl(⋅) and xh(⋅) are non-decreasing. Note that U′a(t) =
vt(xa(t), t), whenever it exists.

Note that ICs (in taste) imply that cl(t) must be non-increasing, and strictly decreasing
whenever xl(t) is strictly increasing. The same is true for high-ability agents. To see that,
suppose that xh(t′) ≥ xh(t) and ch(t′) > ch(t) for some t′ > t. Since earnings are undistorted,
zh(t′) ≤ zh(t). Thus, type (t, h) strictly gains from mimicking (t′, h)—a contradiction.

Reformulating the resource constraint. Let ua(t) represent the utility from numeraire net
of the cost of working of type (t, a). The resource constraint can be written as a function of
{ua(⋅), xa(⋅)}a∈{h,l}:

∫ (µh(z∗(ũ−1(uh(t)))− ũ−1(uh(t))− kxh(t))− µl(u−1(ul(t))+ kxl(t))) dF(t) ≥ G. (33)

Furthermore, ua(t) is pinned down by Ua(0) and xa(⋅):

ua(t) ∶= Ua(t)− vt(xa(t), t) = Ua(0)+∫
t

0
vt(xa(t′), t′) dt′ − vt(xa(t), t). (34)

Thus, we effectively expressed the resource constraint as a function of {Ua(0), xa(⋅)}a∈{h,l}.

Reformulating the objective. Incorporate the downward incentive constraints in ability
(31) into the objective function by forming a Lagrangian:

L = λhµh ∫ Uh(t) dF(t)+ λlµl ∫ Ul(t) dF(t)+∫ (Uh(t)−Ul(t)) dΓ(t) (35)

where Γ(t) stands for the value of marginally relaxing the downward incentive constraints
(in ability) for all types in the interval [0, t]—see Jullien (2000) for an analogous formulation
in the model with type-dependent outside options. We assume that Γ(t) corresponding to
the optimal mechanism exists. Note that Γ(t) is non-negative and non-decreasing, equal to
zero for t < 0 and constant for t ≥ t̄. The multiplier Γ(t) can be discontinuous. For instance,
Γ(t̄) = Γ(0) > 0 means that the IC in ability binds only for the lowest taste type t = 0, while
Γ(t̄) > 0 and Γ(t) = 0,∀t < t̄, means that this constraint binds only for the highest taste type
t = t̄. An intermediate case, with Γ(t) increasing over the interval of types, is also possible.

Integrate the objective by parts, starting with high-ability agents:

∫ λhµhUh(t) dF(t)+∫ Uh(t) dΓ(t) = (λhµh + Γ(t̄))Uh(t̄)−∫ (λhµhF(t)+ Γ(t))U′h(t) dt

= (λhµh + Γ(t̄))Uh(0)+∫ (λhµh(1− F(t))+ Γ(t̄)− Γ(t))vt(xh(t), t) dt,
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and similarly for the low-ability agents:

∫ λlµlUl(t) dF(t)−∫ Ul(t) dΓ(t) = (λlµl − Γ(t̄))Ul(t̄)−∫ (λlµl F(t)− Γ(t))U′l(t) dt

= (λlµl − Γ(t̄))Ul(0)+∫ (λlµl(1− F(t))+ Γ(t)− Γ(t̄))vt(xl(t), t) dt,

where we used U′a(t) = vt(xa(t), t), implied by the local ICs in taste.

Planner’s problem. We can write the planner’s problem as

max
{Ua(0),xa(⋅)}a∈{h,l}

(λhµh + Γ(t̄))Uh(0)+∫ (λhµh(1− F(t))+ Γ(t̄)− Γ(t))vt(xh(t), t) dt

+ (λlµl − Γ(t̄))Ul(0)+∫ (λlµl(1− F(t))+ Γ(t)− Γ(t̄))vt(xl(t), t) dt (36)

subject to the resource constraint (33) and the monotonicity constraints that require xh(⋅)
and xl(⋅) to be non-decreasing. We define a relaxed problem as the planner’s problem with
the monotonicity constraints dropped.

FOCs of the relaxed problem. It will be convenient to define ga(t) ∶= 1/u′(ca(t)). Note
that ga(t) is a strictly increasing transformation of ca(t). Thus, ga(t) is non-increasing in t,
and strictly decreasing when xa(t) is strictly increasing.

ga(t) represents a resource benefit of marginally lowering the utility from numeraire (net
of labor cost) of an agent with type (t, a). For the low-ability agents, this can be verified by
differentiating the resource constraint (33) with respect to ul(t). For the high-ability types,
the resource impact of perturbing uh(t) is given by:

d[z∗(ũ−1(uh(t)))− ũ−1(uh(t))]
duh(t)

= dz∗(c(t))
dc(t)

1
ũ′(c(t))

− 1
ũ′(c(t))

. (37)

Furthermore, ũ′(c(t)) = u′(c(t)) −w′(z∗(c(t))dz∗(c)
dc . If earnings are on the boundary and

dz∗(c)
dc = 0, then it follows that the resource impact is gh(t). Otherwise, given that earnings

are undistorted, we have u′(c) = w′(z∗(c)), which implies dz∗(c)
dc = u′′(c)

w′′(z∗(c)) . Plugging these
in, we obtain

d[z∗(ũ−1(uh(t)))− ũ−1(uh(t))]
duh(t)

= − 1
u′(ch(t))

= −gh(t). (38)

Intuitively, since earnings are undistorted, the planner is indifferent between adjusting
ch(t) or zh(t) to achieve a given change of uh(t).
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The first-order conditions of the relaxed problem with respect to Uh(0) and Ul(0) are:

λhµh + Γ(t̄)− αµh ∫ gh(t)dF(t) = 0, (39)

λlµl − Γ(t̄)− αµl ∫ gl(t)dF(t) = 0. (40)

Summed, they pin down the multiplier on the resource constraint α:

1
α
= Ea,t [ga(t)] =∶ ḡ. (41)

We can also rewrite them as

Γ(t̄) = µh ∫ (
gh(t)

ḡ
− λh) dF(t) = −µl ∫ (

gl(t)
ḡ
− λl) dF(t). (42)

The first-order conditions with respect to xa(t), a ∈ {h, l}, accounting for the potential corner
solution at xa(t) = 0, require

(λhµh(1− F(t))+ Γ(t̄)− Γ(t))vtx(xh(t), t)

+ α [(vx(xh(t), t)
u′(ch(t))

− k)µh f (t)− vtx(xh(t), t)µh ∫
t̄

t
gh(t′)dF(t′)] ≤ 0 (43)

and

(λlµl(1− F(t))+ Γ(t)− Γ(t̄))vtx(xl(t), t)

+ α [(vx(xl(t), t)
u′(cl(t))

− k)µl f (t)− vtx(xl(t), t)µl ∫
t̄

t
gl(t′)dF(t′)] ≤ 0. (44)

Define the good x wedge as τa(t) ∶= vx(xa(t),t)
u′(ca(t)) − k. A positive (respectively, negative) value

of the wedge implies that allocation x is distorted downwards (reps., distorted upwards,
provided that xa(t) > 0). We can express the FOCs as

τh(t)
µh f (t)

vtx(xh(t), t)
1
ḡ
≤ µh ∫

t̄

t
(

gh(t′)
ḡ
− λh) dF(t′)− Γ(t̄)+ Γ(t) (45)

τl(t)
µl f (t)

vtx(xl(t), t)
1
ḡ
≤ µl ∫

t̄

t
(

gl(t′)
ḡ
− λl) dF(t′)+ Γ(t̄)− Γ(t). (46)
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Sum them up and multiply by ḡ to get

τh(t)
µh f (t)

vtx(xh(t), t)
+ τl(t)

µl f (t)
vtx(xl(t), t)

≤ (1− F(t))Ea,t′ [ga(t′)− ḡ ∣ t′ ≥ t] . (47)

Since ga(t) is non-increasing with taste, the right-hand side is (weakly) negative. Thus,
either τh(t) or τl(t)must be (weakly) negative for any t ∈ Θt.

B.2 Optimal goods distortions

The following proposition characterizes the optimal goods market distortions with curva-
ture in the utility function. To rule out an uninteresting case, we assume that in the opti-
mum a positive measure of agents receive x > 0. We discuss this proposition and provide
intution in the main body of the paper (Section 4.3.1).

Proposition 3. Suppose that Assumptions A2 and A3 hold, and that agents’ preferences are given
by formula (29). The optimal mechanism has the following properties:

1. Distortions to good x are optimal: There can be no interval of taste types [i1, i2] ⊆ [0, t̄]where,
for all t ∈ [i1, i2], max{xh(t), xl(t)} > 0 and both xh(t) and xl(t) are undistorted.

2. Assume that the optimum does not require ironing.25 The optimal allocation of good x of the
low-ability types is either distorted upwards or undistorted.

3. Assume λh = 0 and that at the optimum xh(t) > xl(t) for all t ≥ t0. The optimal allocation
of good x of the high-ability types with taste t ∈ (t0, t̄] coincides with the solution to the one-
dimensional monopolistic screening problem (with the reservation value given by the utility
of type (t0, h) and the lower bound on feasible allocations of x given by xh(t0)).

Proof. Part 1. Consider an optimal allocation rule. Suppose there exist i1, i2 ∈ Θt, i2 > i1,
such that for all t ∈ [i1, i2] both xh(t) and xl(t) are undistorted and at least one of them is
strictly positive.

We will start by showing that when xa(t) is undistorted and strictly positive over the taste
interval [i1, i2] then xa(t) is strictly increasing and ca(t) strictly decreasing in t over this
interval, for all a ∈ {h, l}. This is useful since it means that the monotonicity constraints are
slack for any t ∈ (i1, i2) and the FOC from the relaxed problem must hold at the optimum.
Suppose that xa(t1) = xa(t2) = x̄ > 0 for some i1 ≤ t1 < t2 ≤ i2. Since markets are not distorted

ku′(ca(t2))− ku′(ca(t1)) = vx(x̄, t2)− vx(x̄, t1) = ∫
t2

t1
vxt(x̄, t)dt > 0, (48)

25That is, we can drop the monotonicity constraints on xl(t) and xh(t)without affecting the solution.
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which means that ca(t2) < ca(t1). however, then type (t2, a) would mimic (t1, a), which is
a contradiction. Furthermore, if xa(t2) > xa(t1) then ca(t2) < ca(t1), since otherwise type
(t1, a)would mimic (t2, a).

Suppose that low-ability types with taste above threshold tl, where tl < i2, consume a
positive amount of good x. Define t̃ ∶= max{i1, tl}. Then the high-ability types with taste
from [t̃, i2]must also consume x in a positive quantity, which follows from their allocation
of x being undistorted. Since both xh(t) and xl(t) are strictly increasing over [t̃, i2], the
monotonicity constraints are slack for all t ∈ (t̃, i2) and the FOCs from the relaxed problem
inform us of the welfare impact of a small perturbation within this open interval. Consider
(47). Since ga(t) is a monotone transformation of ca(t), it is strictly increasing over [t̃, i2],
and the right-hand side of (47) is strictly negative for any t ∈ (t̃, i2). On the other hand,
the left-hand side is equal to zero, since good x is undistorted. The FOC is violated and
the planner can improve the allocation by perturbing both xl(t) and xh(t) upward for all
t ∈ (t̃, i2).

Next suppose that within the taste interval [i1, i2] none of the low-ability types and all of
the high-ability types consume a positive amount of x. Recall that that Ua(t) = vt(xa(t), t),
for all a ∈ {h, l}, where the right-hand side is increasing in xa(t). Since Uh(i1) ≥ Ul(i1) and
xh(t) > 0 = xl(t) for all t ≥ i1, it follows that U′h(t) > U′l(t) and Uh(t) > Ul(t) for all t > i1.
Thus, Γ(t) = Γ(i1) for all t ∈ (i1, i2). The FOC for xh(t) becomes

τh(t)
µh f (t)

vtx(xh(t), t)
1
ḡ
= µh ∫

1

t
(

gh(t′)
ḡ
− λh) dF(t′)− Γ(t̄)+ Γ(i1). (49)

The derivative of the right-hand side with respect to t is proportional to λh −
gh(t)

ḡ . Given
that gh(t) is strictly decreasing over the interval (i1, i2), the right-hand side can be either
strictly decreasing or strictly increasing or first strictly decreasing and then strictly increas-
ing. Either way, there are at most two values of t for which the right-hand side is zero.
Thus, for almost all t ∈ (i1, i2) the first-order condition is violated and the planner can im-
prove the allocation by distorting xh(t).

Part 2. Consider the relaxed problem. Define

ϕ(t) ∶= µl ∫
t

0
(λl −

gl(t)
ḡ
) dF(t)− Γ(t). (50)

Combining FOCs with respect to xl(t) and Ul(0) yields

ϕ(t) ≥ τl(t)
µl f (t)

vtx(xl(t), t)
1
ḡ

. (51)
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Let’s characterize the behavior of ϕ(t). From the FOC with respect to Ul(0)we know that

µl ∫
t̄

0
(λl −

gl(t)
ḡ
) dF(t) = Γ(t̄) ≥ 0. (52)

Since gl(t) is non-increasing, there exists a threshold t̃ ≥ 0 such that λl ≥
gl(t)

ḡ for all t ≥ t̃.
It follows that the first term of ϕ(t) is continuous in t, equal to 0 at t = 0, and (weakly)
decreasing until t̃, at which point it becomes (weakly) increasing, eventually reaching Γ(t̄).
The second term, −Γ(t), is right-continuous (which follows from the definition of Γ(t))
and (weakly) decreasing in t, eventually reaching −Γ(t̄). Thus, ϕ(0) ≤ 0 and ϕ(t̄) = 0. In
addition, ϕ(t) can be strictly positive only when t > t̃, i.e. in the region where the first term
is increasing.

Now, suppose there exists t0 ∈ Θt for which τl(t0) > 0, which would contradict the propo-
sition. That requires ϕ(t0) > 0. Since ϕ(⋅) is right-continuous and it eventually reaches the
value ϕ(t̄) = 0, there must exist t1 > t0 such that ϕ(t) > 0 for all t ∈ (t0, t1) and ϕ(t−1) > ϕ(t)
for all t > t1. Since ϕ(⋅) is strictly decreasing at t1, Γ(⋅) is strictly increasing at this point,
implying Uh(t1) = Ul(t1).

Given that Uh(t0) ≥ Ul(t0), it follows that

Uh(t1)−Uh(t0) ≤ Ul(t1)−Ul(t0), (53)

or

∫
t1

t0
U′h(s)ds ≤ ∫

t1

t0
U′l(s)ds. (54)

Thus, there must exists t′ ∈ (t0, t1) such that U′h(t
′) < U′l(t

′) or, equivalently, xh(t′) ≤ xl(t′).

If xl(t′) > 0, then the FOC with respect to xl(t′) holds as an equality and τl(t′) > 0. Since
xh(t′) ≤ xl(t′) and ch(t′) > cl(t′)—which must hold, as otherwise type (t, h) would mimic
(t, l)—it follows that τh(t′) > 0. That contradicts (47), which requires that either τh(t′) or
τl(t′) is non-positive.

If xl(t′) = xh(t′) = 0, then, by monotonicity, xl(t0) = xh(t0) = 0. Similarly as in the previous
case, τl(t0) > 0 and xh(t0) ≤ xl(t0) implies that τh(t0) > 0, which contradicts (47).

Part 3. We will consider the planner’s subproblem of choosing the allocation of high ability
types with taste t > t0 taking as given the rest of the allocation rule. We will show that it
can be written as a one-dimensional monopolistic screening problem with non-quasi-linear
utilities.
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By assumption, the welfare weight is 0 for the high-ability types. Furthermore, the marginal
value of public funds is always positive. Thus, the planner’s objective with respect to the
high-ability types is to maximize revenue.

We will show that the downward ICs in ability are slack for t > t0. Note that the ICs in taste
require that U′a(t) = vt(xa(t), t), with the right-hand side strictly increasing in xa(t). Thus,
given that the optimal allocation involves Uh(t0) ≥ Ul(t0) and xh(t) > xl(t) for all t ≥ t0, it
follows that U′h(t) > U′l(t) and Uh(t) > Ul(t) for all t > t0.

Define ph(t) ∶= z∗(ch(t)) − ch(t) as a transfer from type (t, h) to the planner. Let P(c) ∶=
z∗(c) − c, which is strictly decreasing, and define the disutility from transfer as d(p) ∶=
−ũ(P−1(p)). It follows that the utility of type (t, h) from allocation (c, x, z) where z = z∗(c)
can be described as v(x, t)− d(p)where p = z − c.

Now, we can write the planner’s subproblem over {xh(t), ph(t)}t∈(t0,t̄], taking the allocation
of remaining high-ability types as given, as:

max
{xh(t),ph(t)}t∈(t0,t̄]

∫
t̄

t0
(ph(t)− kxh(t)) dF(t) (55)

subject to incentive-compatibility constraints

v(xh(t), t)− d(ph(t)) ≥ v(xh(t′), t)− d(ph(t′)), ∀t, t′ ∈ [0, t̄]. (56)

The single-crossing condition implies that the local incentive constraints are sufficient and
we only need to keep track of incentives to deviate to within the set [t0, t̄]. We can summa-
rize these incentive constraints as

Uh(t) = Uh(t0)+∫
t

t0
vt(xh(t), t), ∀t ∈ (t0, t̄], (57)

together with the requirement that xh(t) is non-decreasing over [t0, t̄]. Note that Uh(t0)
and xh(t0), which are taken as given, play the roles of the reservation value and the lower
bound on the feasible allocation of x, respectively. Thus, we can rewrite the problem as

max
{xh(t),ph(t)}t∈(t0,t̄]

∫
t̄

t0
(ph(t)− kxh(t)) dF(t) (58)

subject to (57), xh(⋅) being non-decreasing and xh(t) ≥ xh(t0),∀t ∈ (t0, t̄], which concludes
the proof.
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