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Abstract

Policymakers often distort goods markets to effect redistribution—for example, via

price controls, differential taxation, or in-kind transfers. We investigate the optimal-

ity of such policies alongside the (optimally-designed) income tax. In our framework,

agents differ in both their ability to generate income and their consumption preferences,

and a planner maximizes a social welfare function subject to incentive and resource con-

straints. We uncover a generalization of the Atkinson-Stiglitz theorem by showing that

goods markets should be undistorted if the heterogeneous consumption tastes (i) do

not affect the marginal utility of disposable income, (ii) do not enter into the social wel-

fare weights and (iii) are statistically independent of ability. We also show, however,

that market interventions play a role in the optimal resolution of the equity-efficiency

trade-off if any of the three assumptions is relaxed. In a special case of our model

with linear utilities, binary ability, and continuous willingness to pay for a single good,

we characterize the globally optimal mechanism and show that it may feature means-

tested consumption subsidies, in-kind transfers, and differential commodity taxation.
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1 Introduction

Policymakers often distort market allocations as a way of addressing inequality. In de-
veloped countries, for example, it is common for local housing authorities to provide af-
fordable housing, impose rent-control policies, or subsidize construction of rental housing
for low-income tenants. Food assistance is also prevalent—for instance, in the form of
food stamps in the United States. And recently, many European countries imposed caps
on electricity prices to shield vulnerable households from sharp increases in energy bills.
In developing countries, likewise, in-kind provision of food items and subsidized energy
consumption have long been an important part of the safety net.

Market-level redistributive policies defy conventional economic wisdom—rooted in the
welfare theorems—that market interventions compromise efficiency and thus should be
avoided (absent market failures). A recent literature on inequality-aware market design has
pointed out, however, that policies such as price controls and rationing may be justified
on welfare grounds if policymakers lack the information or instruments needed to effect
redistribution through targeted lump-sum transfers.1 The key intuition is that agents’ be-
havior in the market may reveal information about their welfare weights: in settings where
agents’ redistribution-worthiness is not directly observed, willingness to pay for a good
may be correlated with welfare-relevant characteristics (such as income level or wealth).
By modifying market-clearing rules to induce appropriate self-selection, the planner can
trade off efficiency in the market with equity—distorting the allocation in order to effect
redistribution to agents with higher levels of need.

However, arguments in favor of market interventions remain incomplete without consid-
ering the role of broader policy instruments that address inequality. In particular, income
taxation is often thought of as the primary—and ideal—tool for effecting redistribution in
the presence of incentive constraints (see, e.g., Kaplow (2011) and the references therein).
Thus, we ask: Can redistribution through markets be justified if the policymaker also con-
trols income taxation? And if yes, how do market interventions interact with the income tax to
strike the balance between equity and efficiency?

The public finance literature provided the answer in a core benchmark case: By the Atkinson-
Stiglitz theorem, if agents only differ in their ability to generate income (and preferences
satisfy a weak-separability assumption), then income taxes alone are sufficient to maxi-
mize social welfare for any set of welfare weights (Atkinson and Stiglitz (1976)); i.e., goods

1See, for example, the work of Condorelli (2013), Dworczak r⃝ al. (2021), and Akbarpour r⃝ al. (2024)—
building on classical insights such as those of Weitzman (1977), Spence (1977), and Nichols and Zeckhauser
(1982).
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market interventions are redundant at best and harmful at worst. Under this perspective,
redistribution through markets can be defended only if the policymaker lacks the ability to
adjust income taxes.

However, in this paper, we show that market interventions can be a valuable redistribu-
tive tool more broadly. Specifically, we examine the desirability of interventions in goods
markets in the presence of multidimensional heterogeneity, where individuals differ both in
their productive ability and in their consumption tastes. In line with the public finance
literature studying the robustness of the Atkinson-Stiglitz theorem, we find that once het-
erogeneity in tastes is introduced, it may be beneficial to supplement the income tax with
market interventions. In contrast to most of that literature, by employing a mechanism
design framework under a few simplifying assumptions, we are able to characterize the
optimal combination of income taxation and redistributive market design. Our character-
ization of the optimal multidimensional mechanism shows that it is typically optimal to
use both income taxation and redistributive market design to resolve the equity-efficiency
trade-off.

Our analysis has two parts. As a baseline, we first prove an extension of the Atkinson-
Stiglitz theorem to our setting with multidimensional heterogeneity in ability and tastes;
however, this is only possible under three strong assumptions. We show that income taxa-
tion alone is sufficient (and market interventions are redundant) when:

A1. Consumption tastes do not affect the marginal utility of disposable income (when
goods are priced at marginal costs);

A2. Welfare weights depend only on agents’ ability levels, and not on their consumption
tastes;

A3. Consumption tastes and ability are statistically independent.

Assumption A1 means that the utility an agent obtains from a given disposable income
does not vary with their preference type, assuming goods are priced at marginal costs.
Therefore—conditional on the same ability—two agents with different consumption tastes
must value an additional dollar of income in the same way, and in particular make the same
labor supply decisions. Together with Assumption A2, this implies that the planner has no
desire to redistribute between agents with different tastes; the planner is concerned only
with redistribution across ability levels. By Assumption A3, meanwhile, willingness to
pay for goods is uninformative about ability. Thus, under Assumptions A1–A3, distorting
choices in the goods market neither serves a valuable redistributive role on its own, nor
screens agents’ ability levels—and hence it should be avoided.
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In the second part of our analysis, we show that the assumptions used to derive the Atkinson-
Stiglitz result in our setting are “tight” in the sense that if we relax any one of them, the
conclusion of the theorem fails. We characterize the optimal mix of income tax and mar-
ket intervention in a simplified specification that permits a tractable analysis of optimal
mechanisms in the presence of multidimensional heterogeneity. The simplified framework
features an intensive-margin choice of two commodities: a good x, which is singled out
for potential redistributive market intervention, and a numeraire c, which can be thought
of as an aggregate consumption good. Agents have utilities that are linear in consumption
and labor supply. There is a continuum of taste types, but ability is a binary characteristic,
with low-ability agents unable to generate any income, and the planner attaching a weakly
higher average welfare weight to low-ability agents.

While stylized, our simplified specification can be considered a best-case scenario for in-
come taxation: The optimal income tax always leads to efficient labor market outcomes—
which means that interventions in goods markets are never aimed at reducing distortions
in the labor market; rather, they directly effect redistribution. Furthermore, rich hetero-
geneity in consumption tastes allows us to focus on market-design implications, which
have received far less attention than the optimal income tax in the literature.

We first relax Assumption A1, according to which tastes do not affect the marginal utility
of disposable income. When agents choose between good x and the numeraire, Assump-
tion A1 holds if and only if utilities are quasi-linear in the numeraire, allowing agents to
freely adjust consumption until the marginal utility of good x is equated with the constant
marginal utility of the numeraire. We violate Assumption A1 by supposing that consump-
tion of the numeraire cannot fall below some subsistence level c. Absent any market in-
tervention, agents with low ability (and, thus, low income) and high taste for good x must
limit their consumption of x to maintain subsistence. As a result, their marginal utility of
income is higher than that of other agents.

The optimal mechanism in this setup looks as follows: First, the income tax redistributes
from rich (high-ability) to poor (low-ability) as much as possible subject to maintaining
the high-ability agents’ incentive to work. Second, good x is subsidized at low consump-
tion levels and taxed at high consumption levels. The subsidy at low consumption levels
creates a (first-order) welfare gain by relaxing low-ability, high-taste agents’ subsistence
constraint—allowing them to consume more of the good. This positive effect dominates the
(second-order) negative distortion of making some agents over-consume good x. Mean-
while, because high levels of consumption of good x can only be reached by agents with
labor income, the planner can tax purchases of x on the margin to raise more revenue from
high-taste, high-ability agents. That additional revenue is then used to partially finance
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the subsidy for low consumption of good x. In particular, if the planner cares only about
low-ability agents, the marginal after-tax price for high-enough quantities should be set to
the price that would be chosen by a revenue-maximizing monopolist. The resulting non-
linear pricing scheme can be implemented via a combination of an in-kind transfer and a
commodity tax on transactions in the private market.

The structure of the optimal policy—in particular, the involvement of a distortionary mar-
ket intervention—is not specific to subsistence constraints; it is qualitatively shared by any
specification of agents’ utilities that violates Assumption A1. For instance, when the util-
ity function from consuming the numeraire is strictly concave, agents with higher taste for
good x will consume less numeraire and thus have higher marginal utility of income. Then,
by subsidizing low levels of consumption of good x, the planner is able to redistribute the
numeraire towards high-taste, low-ability agents who have high marginal utility of in-
come. If the planner assigns no (or low) welfare weight to high-ability agents, she also
taxes high levels of consumption of good x, which allows her to further redistribute from
high-ability to low-ability agents.

Meanwhile, relaxing either Assumption A2 or Assumption A3 creates a correlation be-
tween welfare weights and tastes and, thus, leads to a motive to redistribute across the
taste types. These two cases are technically similar and we discuss them together. As a
general principle, income redistribution is complemented by a simple market intervention:
Purchases of the good are taxed when agents consuming it have lower welfare weights on
average (e.g., when there is positive correlation between taste and ability) and subsidized
otherwise (e.g., when there is negative correlation between taste and ability). However,
these is also a sense in which income taxation and market design become substitutes. Since
income reveals information about ability, it serves as a useful instrument for (third-degree)
price discrimination in the goods market—precisely when either Assumption A2 or A3
fails. Specifically, under our assumptions, the planner would like to offer a lower price to
low-ability agents. However, the degree to which this is feasible is limited by incentive
constraints. When the income tax is maximally redistributive subject to respecting the in-
centive constraints of high-ability agents, prices in the market cannot depend on income.
This outcome is optimal when the planner has strong vertical redistributive preferences,
measured by the gap between the average welfare weights of low- and high-ability agents.
However, when the planner’s vertical redistributive preferences are weak, it becomes op-
timal to reduce the income tax paid by high-ability agents, and use the slack in the incen-
tive constraints to offer income-dependent prices in the goods market. Thus, in this case,
the role of the income tax is limited to allow for richer instruments in the design of the
market—namely, a means-tested subsidy for the good.
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In summary, our analysis suggests that there may be a number of circumstances under
which it is optimal to combine income tax policies with redistributive market design. The
key intuition for why this happens aligns closely with the motivation for redistributive
market design described above: in many goods markets, it is possible to use agents’ purchasing
behavior to infer welfare-relevant information that an income tax policy has no way of condition-
ing on directly. Thus, distortions can be justified in markets where consumption choices
are particularly informative for redistribution, e.g., because they identify agents with high
marginal utility of income (related to A1), directly correlate with welfare weights (related to
A2), or induce correlation with welfare weights through a statistical link to ability (related
to A3). This lends qualified theoretical support for redistributive market interventions,
including some policies used in practice, while at the same time informing the optimal
interaction of such interventions with the income tax.

The classic Atkinson-Stiglitz framework masks this potential role for redistributive mar-
ket design by implicitly assuming that all of the welfare-relevant information revealed
through market behavior is redundant (because it is already revealed by agents’ labor sup-
ply choices). To illustrate the difference, it is instructive to contrast the reasoning just pre-
sented with the logic of the original Atkinson-Stiglitz theorem in the context of a specific
example, for instance healthcare. In both frameworks, richer agents tend to consume more
healthcare. However, because agents in the model of Atkinson and Stiglitz (1976) only
differ in their earnings ability, high consumption of healthcare is not a signal of need but
merely a manifestation of high income. It is thus most efficient to redistribute income di-
rectly by taxing it—any intervention in the healthcare market is an imperfect substitute for
the optimal income tax policy. Yet in practice, demand for healthcare stems from a combi-
nation of ability to pay (i.e., income) and need (i.e., taste). And indeed, in our framework,
heterogeneity in preferences allows for need to shape demand for healthcare. Then, subsi-
dies for low consumption (or low quality) of healthcare services can improve redistribution
relative to income tax alone because they endogenously target the low-ability agents who
have a particularly high marginal utility of income—i.e., the agents who are consuming
low amounts of healthcare relative to need.

The remainder of the paper is organized as follows: The next subsection describes the
related literature. We introduce our framework in Section 2. In Section 3, we extend the
Atkinson-Stiglitz theorem to a setting with multidimensional heterogeneity under assump-
tions A1–A3. In Section 4, we relax each of the three assumptions in turn, and characterize
the optimal interaction between the income tax and goods market interventions in the spe-
cialized framework. We discuss the general structure of the optimal mechanism and our
solution method in Section 5. We present brief concluding remarks in Section 6.
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1.1 Related literature

Our work bridges a recent literature on inequality-aware market design with the classical
public-finance literature on optimal taxation of commodities and income. We discuss these
two literatures and our respective contributions next.

Research on inequality-aware market design (e.g., Condorelli (2013), Dworczak r⃝ al. (2021),
Kang and Zheng (2022), Akbarpour r⃝ al. (2024), Kang (2023), Kang and Watt (2024b)) fo-
cused on the problem of optimal allocation of a single good in the presence of socioeco-
nomic inequality observed in the market. The underlying assumption of that approach has
been that the designer does not control other redistributive tools such as income taxation—
for example, because the designer is a local authority and taxes are set at the national level,
or because political economy frictions block the government from adjusting taxes to the
optimal redistributive target. We show that redistribution through markets may be opti-
mal even when the designer does control income taxation. At the same time, the interaction
between the two tools is non-trivial. For example, the market intervention may take the
form of a means-tested subsidy for consumption or an income-independent in-kind trans-
fer combined with a tax on top-up consumption; income taxes may sometimes be lowered
in order to incentivize labor provision by high-ability agents when low-ability agents face
lower prices in the goods market.

A closely related strand of the literature—including the work of Kang (2024), Pai and Strack
(2024), Bierbrauer (2024), and Ahlvik et al. (2024)—studied the problem of optimal regu-
lation of consumption goods generating an externality (e.g., pollution) under taste hetero-
geneity and redistributive social preferences. Some of these papers also considered the
interaction of the regulation with income taxation. Pai and Strack (2024) showed that their
main results are unaffected when income taxes are present but are set exogenously. Bier-
brauer (2024) derived the welfare impact of small deviations from the uniform tax on ex-
ternalities in a setting with a nonlinear income tax and general equilibrium effects. Ahlvik
et al. (2024) allowed for joint design of an income tax and a consumption tax. These works
showed that Pigovian taxation—a classical solution to the externality problem—must be
appropriately modified to account for redistributive concerns, and that the income tax
alone is not sufficient to address those concerns in the presence of taste heterogeneity.

A rich public finance literature has studied the optimal design of income and consump-
tion taxes under heterogeneity in abilities and preferences. Assuming homogeneous tastes
over goods, Atkinson and Stiglitz (1976) proved that consumption taxes are redundant if
the government can use a nonlinear income tax and agents’ utilities are weakly-separable
between labor supply and consumption. Mirrlees (1976, 1986) allowed for differences in
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tastes by assuming that tastes and abilities are perfectly correlated (and the heterogene-
ity is, thus, one-dimensional) and described the optimal consumption taxes; he also con-
cluded that the multidimensional case, while realistic, is largely intractable. Several papers
utilized the assumption of one-dimensional heterogeneity to investigate policies such as
taxes on capital (Golosov et al. (2013); Scheuer and Slemrod (2020); Gerritsen et al. (2025);
Schulz (2021); Hellwig and Werquin (2024)) or on housing (Cremer and Gahvari (1998)).
Within the work that considers multidimensional settings, Cremer et al. (2001, 2003), Di-
amond and Spinnewijn (2011) and Gauthier and Henriet (2018) characterized a nonlinear
income tax and linear consumption (including capital and inheritance) taxes. Moser and
Olea de Souza e Silva (2019) considered agents who are heterogeneous in abilities and in
the strength of present-bias, and studied the optimal (paternalistic) savings policies.2

We contribute to this literature by providing precise conditions under which a nonlinear in-
come tax is sufficient (and interventions in the goods markets are redundant) in the multi-
dimensional setting. These conditions are restrictive, suggesting that market interventions
are (at least theoretically) useful in resolving the equity-efficiency trade-off under a broad
set of circumstances. Furthermore, by leveraging recent developments in mechanism de-
sign, we provide a multidimensional framework where the optimal interaction between
the income tax and market design is rich but can be characterized in closed form.

There are also related studies that examine desirability of goods market interventions using
a sufficient-statistics approach. Saez (2002) considered a setting in which individuals differ
in abilities and tastes, and derived conditions under which introducing a small tax on one
of the goods cannot improve social welfare if the policymaker can use a nonlinear income
tax. Saez and Stantcheva (2018), Allcott et al. (2019) and Ferey et al. (2024) extended the
Saez (2002) approach by deriving the formulas for optimal income and commodity (or
capital) taxes and estimating the relevant sufficient statistics from the data. Our results are
consistent with the conditions in Saez (2002) but provide a complementary perspective by
fleshing out the assumptions on the model primitives—rather than endogenous sufficient
statistics—that make commodity distortions redundant, and by characterizing the optimal
interaction between income taxes and market interventions when these assumptions are not
met. Furthermore, we describe the global optimum with respect to arbitrary mechanisms
that could include rationing, quotas or public provision of goods. By contrast, conditions
based on sufficient statistics are necessarily local and informative about the effects of small
tax reforms only.

2Other related studies, which are not directly concerned with a treatment of commodities, include those of
Kleven et al. (2009), Golosov and Krasikov (2023) and Spiritus et al. (2022) on taxation of couples and Boerma
et al. (2022) on the optimal bunching patterns in the labor market with multidimensional sorting.
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Restricting attention to linear taxes (on income and goods), Deaton (1979) proved the suf-
ficiency of an income tax when, in addition to the original assumptions of the Atkinson-
Stiglitz theorem (i.e., preference homogeneity and weak separability), demand for goods is
linear in disposable income. Deaton and Stern (1986) extended this result to a setting with
(limited) taste heterogeneity by allowing the linear Engel curves to have taste-dependent
intercepts, under the assumption that tastes are uncorrelated with social marginal utility
of income. This result on redundancy of linear consumption distortions under taste hetero-
geneity parallels our baseline result on the redundancy of arbitrary nonlinear distortions.
Our proof strategy, however, is very different, and it allows us to accommodate a richer
class of preferences, including those with nonlinear Engel curves.

Finally, our work makes a technical contribution to the multidimensional screening litera-
ture; we propose a novel solution technique for a class of models in which one dimension
of the type space is continuous and the other binary. Models with a similar structure (al-
though in different economic contexts) have been studied by Fiat et al. (2016) and Li (2021).
The key idea in our approach is to represent the incentive compatibility constraint across
the binary (ability) type as an outside option constraint, as in the work of Jullien (2000),
using the fact that high-ability agents in our framework can mimic low-ability agents but
not vice versa. We then adopt a recent procedure developed by Dworczak and Muir (2024)
to solve for the optimal allocation rule for high-ability agents, when the low-ability agents’
allocation is fixed. Finally, we use the linearity of the problem to argue that the full solution
features allocation rules that are step functions with a limited number of steps, explicitly
accounting for the possibility of “ironing.” We discuss our methodology and the relation-
ship to existing approaches in Section 5 which contains our main technical result.

2 General Framework

Our framework features agents who are heterogeneous in ability and taste and make op-
timal labor supply and consumption choices, as well as a planner who aims to maximize
social welfare subject to incentive-compatibility and resource constraints.

There is a unit mass of agents who differ in both their consumption taste t ∈ Θt and their
earning ability a ∈ Θa. Types θ = (t, a) ∈ [Θt ×Θa] ≡ Θ ⊆ R2 are jointly distributed according
to F(θ). Agents have preferences over a vector of goods x ∈ RL

+, a numeraire consumption
good c ∈R, and earnings z ∈R+, as given by the utility function

U((c, x, z), (t, a)) = u(c) + v(x, t) −w(z, a), (1)
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which is upper semi-continuous in (c, x, z) and measurable in (t, a).3 The separation of
consumption into a vector of goods x and a one-dimensional numeraire c is convenient for
studying different cases of the model. Conceptually, one can think of x as a set of goods
that are singled out for potential intervention, and of c as aggregating the consumption of
all remaining goods into a single composite commodity. We assume that u(c) is strictly
increasing. While we do not (at this point) assume specific functional forms for the differ-
ent components of utility (we have not even imposed any single-crossing conditions), we
assumed that utility is additively separable between the numeraire c, goods x, and earn-
ings z.

The planner chooses an allocation rule Y = (c, x, z) ∶ Θ → [R ×R+ ×RL
+] to maximize the

expected utility of agents weighted with welfare weights λ(θ) ≥ 0. The average welfare
weight is normalized to 1. That is, the social objective is

∫ λ(θ)U(Y(θ), θ) dF(θ). (2)

The planner faces the resource constraint

∫ [z(θ) − c(θ) − k ⋅ x(θ)] dF(θ) ≥ G, (3)

where k ∈ RL
++ is the marginal cost of producing goods x in terms of the numeraire and

G represents the minimum revenue requirement (which could be negative, representing
exogenous revenue sources).

The planner does not observe individual agents’ types. Thus, the mechanism must satisfy
the standard incentive compatibility (IC) constraints

U(Y(θ), θ) ≥ U(Y(θ′), θ), ∀θ, θ′ ∈ Θ. (4)

The constraints (4) prevent agents from misreporting their taste, ability, or both. A mecha-
nism that satisfies the resource constraint (3) and the IC constraints (4) is called feasible.

To define two concepts crucial for the analysis, consider a consumption problem of an
agent with taste type t and disposable income m who faces prices equal to marginal costs:

V(m, t) ∶=max
y∈RL+
{u(m − k ⋅ y) + v(y, t)}; (5)

3As is common in the public finance literature, we model labor choices by letting individuals select the
level of earnings z directly, with ability determining the cost of generating it; this is equivalent to a model in
which agents choose labor supply and ability determines the earnings generated per unit of labor.
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we denote the set of solutions to this problem by X⋆(m, t) and assume that it is non-empty.
Then, we say that allocation rule Y = (c, x, z) induces a (Pareto) efficient allocation of goods if,
for almost all θ,

x(θ) ∈ X⋆(c(θ) + k ⋅ x(θ), t). (6)

Note that c(θ) + k ⋅ x(θ) is the resource cost of consumption of type θ under allocation Y.
Intuitively, efficiency requires that it is not possible to increase utility for a positive measure
of agents by adjusting their allocation of goods while keeping the resource cost of their
consumption fixed. We call any allocation that does not satisfy condition (6) distorted.

Finally, we define the marginal utility of disposable income as ∂V(m, t)/∂m (whenever the
derivative exists). Note that the marginal utility of disposable income is tied to the curva-
ture of the function u: when u(c) is differentiable, the envelope formula implies

∂V(m, t)
∂m

= u′(m − k ⋅ x⋆(m, t)),

where x⋆(m, t) ∈ X⋆(m, t) is a consumption bundle solving problem (5). Thus, except for
degenerate cases, the marginal utility of disposable income is constant in consumption
taste t only if the utility function u is linear.

3 Baseline: When Interventions in Markets are Redundant

In this section, we establish a baseline result that organizes the rest of the analysis. We
introduce three assumptions that jointly imply that the planner can achieve an optimal
allocation with an income tax alone, without intervening in the goods markets.

Assumption A1. Consumption tastes do not affect the marginal utility of disposable income:
u(c) = c, ∀c ∈R.

Assumption A2. Welfare weights depend only on ability: λ(t, a) ≡ λ̄(a).

Assumption A3. Ability and tastes are statistically independent: F(t, a) ≡ Ft(t)Fa(a), where Ft

and Fa denote the marginal distributions.

For the following result, we assume that an optimal mechanism exists. Moreover, we as-
sume that there exists a Lagrange multiplier α > 0 on the resource constraint (3) (interpreted
as the marginal value of public funds) such that any optimal mechanism maximizes the La-
grangian (i.e., strong duality holds). These regularity assumptions allow us to provide a
proof that highlights the economic intuitions; in Online Appendix OA, we prove a version
of the result that does not require such assumptions.
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Theorem 1. Suppose Assumptions A1–A3 hold. Then, any optimal mechanism induces an efficient
allocation of goods, and can be implemented with a competitive goods market and an income tax.

3.1 Intuition

Theorem 1 can be understood as a generalization of the Atkinson-Stiglitz result to settings
with multidimensional heterogeneity. For intuition, note that distortions in goods market
always lead to a deadweight loss, so they can be justified only if the planner can achieve
better redistribution. However, as we explain below, Assumptions A1–A3 imply that (i)
the planner does not want to redistribute across taste types, and (ii) distortions in goods
markets do not aid redistribution across ability types.

Because the standard Atkinson-Stiglitz setting does not feature preference heterogeneity,
it vacuously satisfies property (i). In our setting, Assumptions A1 and A2 are needed to
guarantee that the planner does not have a direct motive to redistribute across taste types.
The role of Assumption A1 is to ensure that the marginal utility of disposable income (eval-
uated at efficient consumption choices) does not depend on the agent’s type; taste t can be
associated with a high need for a particular good but never a high need for more resources
overall (a high need for a particular good can always be accommodated by reducing the
consumption of other goods).4 By contrast, if u(c) were strictly concave, agents with a
particularly high taste for certain goods could also have higher marginal utility of income,
creating a motive for the planner to redistribute to them. Property (ii), meanwhile, lies at
the heart of the Atkinson-Stiglitz logic and is guaranteed by weak separability in the one-
dimensional setting. Under preference heterogeneity, an additional assumption is needed
because distorting goods choices could potentially reduce labor market distortions or min-
imize information rents from privately observed ability; Assumption A3 rules out that
possibility by ensuring that tastes are uninformative about ability.

While Theorem 1 shows that we can recover the Atkinson-Stiglitz result in our multidimen-
sional setting, the intuition just described already suggests what we prove in the sequel:
all three of the assumptions are essentially necessary for the Atkinson-Stiglitz conclusion
to hold. We thus interpret Theorem 1 as in effect revealing three channels through which
intervention in goods markets may become optimal even when nonlinear income tax instru-
ments are available.

4Interestingly, Eden and Freitas (2024) found a condition closely related to Assumption A1 when studying
utilitarian social welfare functions that satisfy “income anonymity”—a property that each person’s dispos-
able income matters equally for social welfare.
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3.2 Sketch of the proof of Theorem 1

We prove Theorem 1 in two steps (see Appendix A.1 for details). In the first step, we con-
sider a relaxed problem in which the planner is able to directly observe the taste type t.
Then, the problem can be solved for each t separately, ignoring agents’ incentives to mis-
report their tastes. For each t, the relaxed problem becomes a one-dimensional optimal
taxation problem in which agents have identical consumption preferences. Thus, the orig-
inal Atkinson-Stiglitz theorem implies that the allocation of goods should be undistorted
and redistribution should be conducted via (potentially nonlinear) income taxes alone.

In the second step, we show that under our three assumptions, the income tax schedule that
solves the relaxed problem in fact does not depend on the taste type t, and hence is feasi-
ble (and therefore optimal) in the original problem in which the planner does not observe
tastes.5 This step highlights the key role played by Assumptions A1–A3. The social welfare
function has the same shape for every t: The planner neither conditions welfare weights on
t directly (Assumption A2), nor learns about the distribution of ability a by observing t (As-
sumption A3). Moreover, taste t does not affect the marginal utility of disposable income
(Assumption A1). As a result, the income tax that solves the relaxed subproblem does not
condition on t even when t is freely observable. Finally, because the allocation of goods is
efficient in the relaxed problem, it can be implemented in an incentive-compatible way by
pricing goods at marginal cost and letting agents make unrestricted consumption choices,
given their disposable incomes implemented by the optimal income tax.

3.3 Discussion

Theorem 1 can be extended along several dimensions (see Online Appendix OA for de-
tails). First, we show that neither the existence of the numeraire good nor quasi-linear
preferences are essential for the result. In line with the intuition discussed in Section 3.1, it
suffices to directly assume that the marginal utility of disposable income does not depend
on taste type t.6 Second, the additive separability of agents’ preferences over earnings and
consumption can be weakened to the standard weak-separability assumption.7 Third, we
can relax the technical assumptions on the existence of the optimal mechanism and on

5Our approach is inspired by the proof strategy of Haghpanah and Hartline (2020) and Yang (2022) who—
in the context of a revenue-maximizing monopolist—first derive an optimal mechanism assuming that the
designer observes an auxiliary signal, and then show that the optimal mechanism does not need to condition
on that signal.

6In particular, this extension shows that linearity of Engel curves (as assumed, e.g., in Deaton and Stern
(1986)) is not essential for the conclusion of Theorem 1 in the multidimensional setting.

7Relaxing the weak-separability of preferences would introduce a separate motive to tax goods, depend-
ing on their complementary to leisure; for the analysis of this case, see Christiansen (1984).
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strong duality that we used to prove Theorem 1. Formally, we show that any mechanism
that distorts the goods markets can be improved upon by a mechanism that only uses in-
come taxation to redistribute, and that strong duality is not needed if the income tax is
allowed to be stochastic; we also provide conditions under which strong duality holds and
the improving mechanism is deterministic.

It is instructive to compare Theorem 1 to the canonical multidimensional screening frame-
work used to study, e.g., nonlinear pricing by a multiproduct monopolist. Rochet and
Choné (1998) showed that in such problems it is typically optimal to distort all dimen-
sions of the allocation by bunching, i.e., assigning identical bundles of goods to different
types. Full separation of types is suboptimal due to the tension between the participation
constraints and the second-order incentive constraints. In contrast, we found that the al-
location of goods x should never be distorted and, thus, bunching of different taste types
can be easily ruled out. This stark difference in conclusions is due to the absence of par-
ticipation constraints in our framework; indeed, Theorem 1 would fail if such constraints
were included and were binding. In particular, if the planner in our framework wanted to
maximize revenue, then a participation constraint would be needed to make the problem
well-defined, and the optimal mechanism would likely distort all decisions.8

Finally, we note that the logic behind Theorem 1 can be applied more broadly to derive
conditions under which only a subset of available instruments is needed to maximize the
planner’s objective. For illustration, one could ask whether it is ever optimal to focus solely
on redistributive market mechanisms (as in the framework of Dworczak r⃝ al. (2021)) and
set incomes taxes to zero. By flipping the roles of taste t and ability a, as well as goods x
and earnings z in the proof of Theorem 1, we can deduce the following corollary.

Corollary 1. Suppose that Assumptions A1 and A3 hold and—instead of Assumption A2—welfare
weights depend only on tastes: λ(t, a) ≡ λ̃(t). Then, any optimal mechanism induces an efficient
choice of earnings: z(t, a) ∈ arg maxz′{z′ −w(z′, a)},∀(t, a) ∈ Θ, and can be implemented with a
(possibly distortionary) mechanism allocating goods x and no income taxes.9

4 Main Analysis: Interaction of Income Taxation and Market Design

In this and the next section, we characterize the optimal design of goods markets and in-
come taxes when the assumptions of Theorem 1 fail. To that end, we introduce additional

8A Rawlsian planner would choose a mechanism similar to the revenue-maximizing planner (except for
the choice of the lump-sum payment) but Rawlsian preferences additionally violate Assumption A2 because
who the worst-off agent is depends on both the ability type and the taste type.

9Note that the role of quasi-linearity in Assumption A1 for this case is to ensure that the marginal utility
of the numeraire does not vary with ability a at efficient labor supply decisions.
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simplifying assumptions that allow us to find the optimal mechanism in closed form. Sec-
tion 4 focuses on economic insights and discusses the role of redistributive market design
when each of the three assumptions of Theorem 1 is relaxed individually. The underlying
proof technique and its broader relation to multidimensional screening are explained in
Section 5. In particular, the proofs of all results in Section 4 are based on Proposition 2
in Section 5, which characterizes the structure of optimal mechanisms when Assumption
A1–A3 are relaxed all at once.

4.1 Simplified framework

Relative to our baseline framework from Section 2, we make the following additional as-
sumptions. An agent with type θ = (t, a) has a utility function

u(c) + tx − z
a

,

with c ∈R, x ∈ [0, 1], and z ∈ [0, z̄]. Unless stated otherwise, we take

u(c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c c ≥ c,

−∞ c < c.

The interpretation is that c represents numeraire consumption whose level cannot fall be-
low a “subsistence threshold” denoted c. The introduction of a subsistence constraint for
numeraire consumption provides a simple way of breaking the assumption of quasi-linear
utility (Assumption A1) that we used in Theorem 1. While this way of relaxing quasi-
linearity is stylized, it allows us to derive tight predictions about the optimal mechanism;
as we discuss later, the qualitative conclusions continue to hold whenever u(c) is a smooth
and strictly concave function.

The variable x represents the level of consumption of a good or commodity; x can thus
represent quantity, quality, or probability of allocation (in case the good is indivisible). For
concreteness, we refer to x as “quality” throughout. Note that we normalize the maxi-
mal quality of x to be 1 (which is convenient if we want to interpret x as probability).
All individuals have the same preferences over goods that comprise the numeraire c, but
they differ (through the taste parameter t) in their marginal rates of substitution between c
and x. Our specification also assumes a linear disutility function for generating earnings z,
and imposes a finite bound z̄ on earnings.

For tractability, we assume that the ability type is binary: a ∈ {l, h}. We call agents with
a = h the high-ability types, and agents with a = l the low-ability types. We let µa denote
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the mass of agents with ability type a. We assume that it is efficient for high-ability agents
to work, h > 1, and that low-ability agents are effectively unable to work, l = 0.10

Taste types t are distributed according to a cumulative distribution function (cdf) Fa with
strictly positive, absolutely continuous densities fa, for a ∈ {l, h}, supported on the same
interval [0, t̄]. The assumption that the lowest type t is 0 is convenient because it implies
that—without loss of generality—the lowest taste type will only consume the numeraire,
which allows us to interpret ca(0) as the lump-sum transfer to group a.11

Letting λa(t) ≡ λ(t, a), the objective function of the planner is to maximize

∑
a∈{l, h}

µa ∫
t̄

0
λa(t) (ca(t) + txa(t) −

za(t)
a
) dFa(t) (7)

over ca(t) ≥ c, za(t) ∈ [0, z̄], and xa(t) ∈ [0, 1], subject to the incentive-compatibility con-
straint

ca(t) + txa(t) −
za(t)

a
≥ ca′(t) + txa′(t′) −

za′(t′)
a

, ∀t, t′ ∈ [0, t̄],∀a, a′ ∈ {l, h} . (8)

We assume that the average welfare weight λ̄l on low-ability agents is weakly larger than
the average welfare weight λ̄h on high-ability agents. The resource constraint then becomes

∑
a∈{l, h}

µa ∫
t̄

0
(za(t) − ca(t) − kxa(t)) dFa(t) ≥ G. (9)

To avoid trivial cases, we assume that k ∈ (0, t̄), and that G is low enough that there exist
feasible allocations at which all agents’ utilities are finite. Under this assumption, restrict-
ing attention to allocations satisfying the “subsistence constraint,” ca(t) ≥ c for all t, is
without loss of generality.

4.2 Preliminary observations

In our simplified framework, Pareto efficiency requires that all high-ability agents choose
the maximal earnings z̄, and that low-ability agents do not work. We first show a sim-
ple lemma stating that redistribution via income tax does not conflict with labor market
efficiency in our setting.

10We adopt the convention that 0/0 = 0, so that low-ability agents receive utility 0 from not working. Our
analysis only requires that low-ability agents are sufficiently unproductive relative to high-ability agents.

11The assumption that there exist agents who have no value for the good has economic implications (see
Akbarpour r⃝ al. (2024) for a detailed analysis of the case when all values are bounded away from zero); in
our setting, the main implication is that offering a lower price of the good to high-ability agents (compared
to low-ability agents) cannot be used to incentivize all high-ability agents to work.

16



Lemma 1. In any optimal mechanism, labor supply is efficient: zh(t) = z̄, zl(t) = 0, ∀t ∈ [0, t̄].

Lemma 1 confirms our earlier assertion that we study the best-case scenario for income
taxation: Labor markets remain efficient even under strong redistributive motives.

In contrast—as we will show—the optimal mechanism might distort the goods markets; it
is thus instructive to formally define the properties of Pareto efficient allocations of goods
(see Online Appendix OB for formal supporting results). By linearity of utility functions,
agents with taste type t below the marginal cost k should not consume good x in any
efficient allocation; agents with taste type t above the marginal cost k should consume the
maximal quality of good x subject to the subsistence constraint. Thus, interior consumption
x ∈ (0, 1) of the good is consistent with Pareto efficiency only if t = k (due to the agent’s
indifference) or t > k and c = c (due to the binding subsistence constraint).

A simple test of Pareto efficiency of the goods allocation is to check whether the per-unit
price of good x equals its marginal cost. For an incentive-compatible direct mechanism
(za(t), xa(t), ca(t)), we define the per-unit price for a good with (strictly positive) quality
q ∈ Im(xa) faced by ability type a as

pa(q) ∶=
ca(0) − ca(x−1

a (q))
q

. (10)

Intuitively, the numerator is equal to the total payment made by any type t consuming
quality q (i.e., q = xa(t)), compared to a type t = 0 who does not consume the good at all.
Dividing by q turns the total payment into the per-unit price. Pareto efficiency requires
that all agents face a per-unit price for the good equal to its marginal cost k: pa(q) = k for
any a ∈ {l, h} and any strictly positive q ∈ Im(xa).

4.3 Optimality of market distortions without Assumption A1

We first consider the case in which the utility for numeraire consumption is no longer
linear—allowing for the marginal utility of disposable income to vary with taste type—
while maintaining Assumptions A2 and A3. We start by investigating the properties of op-
timal mechanisms when the subsistence constraint binds for the low-ability agents. Then,
we show that the main results are robust to introducing strictly concave utility from nu-
meraire. Whenever Assumption A3 holds, we use “F” (without a subscript) to denote the
(common across the two ability types) cdf of the distribution of taste types.

Theorem 2. Suppose that Assumptions A2 and A3 hold. Furthermore, assume that 1−F(t)
f (t) is non-
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increasing, F(t)
f (t) is non-decreasing, and

µhz̄ (1− 1
h
) −G < k + c and

z̄
h
≥ t̄. (11)

Then, there exists an optimal mechanism in which every agent:

1. chooses how much to work, with each unit of earnings taxed at the rate 1− 1/h;

2. receives a lump-sum transfer equal to c + plql; and

3. can purchase any quality q ∈ [0, 1] of the good at a per-unit price p(q), where

p(q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

pl q ≤ ql,

pl
ql
q + ph (1−

ql
q ) q > ql,

for some quality ql and ph > k > pl. That is, the marginal price is below marginal cost for
qualities lower than ql and above marginal cost for qualities above ql. Moreover, if λh = 0,
then ph is the price that maximizes the net revenue of the planner.

Under the optimal mechanism, agents face a nonlinear price schedule in the goods market,
making the allocation of goods inefficient. The mechanism offers low-quality goods at an
average price strictly below marginal cost. Low-ability agents of sufficiently high taste type
choose to consume the subsidized quality ql (which is the maximal quality they can afford
without labor income). At the same time, high-ability agents—who work and thus have
higher disposable income—can “top up” their consumption of the good; the marginal price
charged for qualities above ql is strictly above marginal cost, and thus extracts revenue
from wealthier agents. In fact, when the welfare weight on high-ability agents is 0, the
top-up marginal price ph is chosen to maximize the net revenue of the planner. In other
words, ph is the price that would have been chosen by a revenue-maximizing monopolist
producing the good at marginal cost k.

Because the lump-sum payment is equal to subsistence consumption plus plql—the total
price of the subsidized quality ql—the optimal mechanism can be decentralized by letting
agents choose between receiving the good with quality ql in-kind, or opting for a higher
cash transfer, together with a flat commodity tax on additional purchases of the good in
the market.12

12In particular, in our model, implementing the optimal mechanism from Theorem 2 does not require
monitoring the consumption levels of individual agents. However, agents must be able to top-up the publicly
provided option with private consumption—this is an appropriate assumption if quality is interpreted as
quantity but may fail in general; see Kang and Watt (2024a) and Kang and Watt (2024b).
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Note that the consumption subsidy in the optimal mechanism is not means-tested: It is
available also to high-ability agents. This is because income taxes are set at a level that
extracts all surplus from working (i.e., the net wage is just enough to cover the cost of
labor supply). If high-ability agents were excluded from the subsidy, given the tax regime,
some of them would choose not to work—which Lemma 1 shows is not optimal. At the
same time, though, the subsidy is phased out by charging agents a higher marginal price
for topping up. This combination of prices achieves the screening effect that underlies the
main results of Dworczak r⃝ al. (2021): high-ability agents with strong enough preferences
for the good choose to top up; because low-ability agents cannot afford to do so, market
sorting in effect identifies the higher-ability agents with particularly strong preferences for
the good, and extracts surplus from them to redistribute via the lump-sum transfer.

The following intuition helps explain why it is optimal to lower the price of the low-quality
good below marginal cost. Suppose that the good is initially offered at marginal cost k.
Low-ability agents with t > k spend all their disposable income (equal to the lump-sum
payment) on the good with quality q < 1 which puts their consumption c at subsistence
level. Crucially, the marginal utility of disposable income for these agents is higher than
of anybody else, since they would (prefer to) spend an additional dollar of income on
higher quality of x (yielding utility gain t/k > 1) rather than on the numeraire (yielding
utility gain 1). Now, perturb the price to a slightly lower level k/(1 + ϵ), where ϵ > 0. This
perturbation has a negative effect due to allocative inefficiency (some agents with t < k
consume the good); however, this effect is of second-order in ϵ (it is an order-ϵ distortion
for an order-ϵ mass of agents). The perturbation also has a positive effect, which is that
all low-ability agents with types t > k now consume a quality higher by qϵ; this is a first-
order effect because even inframarginal taste types enjoy an increase in utility at the order
of ϵ. Thus, for small ϵ, the positive effect dominates the negative effect, and it is optimal to
lower the price below marginal cost.

For additional illustration, consider an example in which the good is treatment for a med-
ical condition. The taste type captures whether (and to what extent) treatment is needed.
When the cost of treatment is high enough, low-income agents are constrained by subsis-
tence and can afford at most a low-quality treatment, while some of them have a very high
marginal utility from treatment quality. Thus, even if the designer has no inherent prefer-
ence for redistribution to agents who are sick (i.e., welfare weights do not depend on the
taste type) and the likelihood of getting sick is unrelated to ability (taste type and ability
types are independent), she still wants to redistribute towards agents who consume low-
quality treatment because of the associated higher marginal utility of disposable income;
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the planner achieves this by subsidizing the price of treatment below its marginal cost.13

Summarizing, we find that the mechanism subsidizes the consumption of the low-quality good
because choosing low quality is a signal of high marginal value of income. Low-ability agents
who consume the good must be at subsistence level, which means that the marginal utility
they would derive from any extra income is high. It is thus optimal to give more resources
to them—and if high-ability agents have enough demand that they choose to top-up their
consumption, taxing that consumption helps finance the subsidy.

Finally, we comment on the regularity assumptions in Theorem 2: First, the monotonicity
of hazard rates is a mathematically restrictive assumption but its only role in the proof is
to rule out ironing and ensure that first-order conditions are sufficient.14 With ironing, as
we explain in Section 5, the optimal mechanism may need to offer additional options to
high-ability agents, which complicates the exposition without adding new economic in-
sight. The condition µhz̄ (1− 1/h) − G < k + c, by contrast, is economically important: it
states that the economy does not have enough resources to put all agents strictly above the
subsistence level. If that condition fails, then the subsistence constraint is moot, and opti-
mality of efficient provision of the good (pricing at marginal cost) follows from Theorem 1
because all agents have identical marginal utility of disposable income (effectively, restor-
ing Assumption A1). Finally, the assumption z̄/h ≥ t̄ ensures that the subsistence constraint
is slack for high-ability agents—it states that high-ability agents are sufficiently productive
relative to the strongest possible taste for buying the good. This assumption is not crucial;
if the subsistence constraint is binding also for some high types, then the solution is vir-
tually the same, with the only difference that high-ability agents with strong enough taste
will consume some quality level qh strictly lower than 1 (see Proposition 2 for the form of
the optimal mechanism without any regularity assumptions).

Robustness to curvature in utility functions. A potential concern with Theorem 2 is that
its conclusion could be driven by the stylized form of the subsistence constraint (that we

13The same story could be told with a luxury good (perhaps a yacht) replacing treatment for a disease, in
which case the appeal of the intuition would be lost. One way to distinguish between these two cases (es-
sential healthcare versus yachts) is to consider a social welfare function in which agents with higher absolute
level of utility receive a lower social welfare weight. An agent consuming yachts could have high marginal
utility from them but since their overall utility is presumably already high, their contribution to social welfare
would be small, turning off the effect described here. In contrast, an agent in need of medical treatment who
chooses low-quality healthcare is likely to have both high marginal utility and low overall utility, resulting
in high redistribution-worthiness. This distinction arises naturally when the planner maximizes a strictly
concave transformation of agents’ utilities; in our current framework with exogenous welfare weights, we
could replicate that logic by making welfare weights a function of tastes (i.e., by relaxing Assumption A2).

14The condition is stronger than usual because the analog of virtual surplus in our analysis is endogenous
to the Lagrange multiplier on the subsistence constraint—see the proof in Appendix A for details.
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used to invalidate A1). An alternative way of relaxing quasi-linearity of preferences is
to consider a utility from numeraire that is nonlinear. Suppose that preferences take the
general form in equation (1) with the functions u, v, and −w assumed smooth and strictly
concave. While a full characterization of the optimal mechanism is no longer attainable
in that case, we find that the main features of the optimal mechanism from Theorem 2 are
maintained. Here, we summarize and discuss the findings; the formal results are relegated
to Online Appendix OC.

First, under the optimal mechanism, consumption of good x is distorted for at least some
types. Second, if the consumption of the low-ability agents is distorted, then it must be
distorted upwards, meaning that it is optimal to subsidize good x for them.15 Third, if
the planner does not value the utility of high-ability types, then it is optimal to charge a
revenue-maximizing price (on the margin) for qualities of x above what the low-ability
agents consume. Thus, optimal mechanism under curvature in the utility function pre-
serves the main features of the optimum under the subsistence constraints.

To build intuition, notice that agents with high taste type choose relatively higher qual-
ity of x and lower consumption of numeraire c. That results in higher marginal utility of
numeraire u′(c) and, hence, higher marginal utility of disposable income. The concavity
of u(c) thus creates a positive correlation between purchases of x and the marginal util-
ity of income. The optimal mechanism exploits this correlation by subsidizing purchases
of good x to support individuals with high marginal utility. Note that preference hetero-
geneity is crucial for the force just described to be present. Agents with different tastes
endogenously differ in their marginal value for disposable income, which creates a motive
for redistribution that cannot be addressed through the income tax alone.

4.4 Optimality of distortions without Assumptions A2 or A3

Next, we assume that utilities are linear in the numeraire consumption (taking c = −∞ in
our specification), restoring Assumption A1, and examine what happens when we relax
Assumptions A2 and/or A3 of Theorem 1. Because both relaxations have a similar effect,
we exposit them together.

Even though we assumed that the designer cares more about low-ability agents than high-
ability agents on average, we cannot conclude that she would prefer to charge a lower price
for the good to low-ability agents. For example, it may be optimal to post a lower price for
high-ability agents if their distribution of taste types is lower (in an appropriate sense) than

15To prove this property, we assume that ironing is not required in the optimal mechanism.
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that for the low-ability agents. To limit the number of cases to consider, we rule out this
(perhaps less economically interesting) case by assuming

(1−Λh(t))γh(t) ≥ (1−Λl(t))γl(t), ∀t ∈ [0, t̄], (12)

where Λa(t) is the average welfare weight on agents with ability a and taste type above
t, and γa(t) = (1 − Fa(t))/ fa(t) is the inverse hazard rate. To interpret condition (12), note
that if the welfare weights on low- and high-ability agents are the same, then the assump-
tion states that the distribution of high-ability agents’ tastes is higher—in the hazard-rate
order—than that of low-ability agents. Analogously, if the taste distribution in the two
different groups is the same, then the assumption states that the welfare weights on low-
ability agents are weakly higher than on high-ability agents, conditional on the taste type
exceeding any threshold.

Theorem 3. Suppose that Assumption A1 and inequality (12) hold, and that

(t − k − (1−Λh(t))γh(t)) fh(t) (13)

is non-decreasing whenever it is negative. Then, there exists an optimal mechanism that takes one
of two forms:

1. Labor income is taxed at a rate 1 − 1/h and all agents can purchase the good at a constant
per-unit price p satisfying

p = k + (1−Λ(p))γ(p),

where Λ(p) is the average welfare weight on all agents with taste type t above p, and γ is the
inverse hazard rate of the unconditional distribution of taste; or

2. Labor income is taxed at a rate strictly lower than 1 − 1/h; agents with no labor income can
purchase the good at a constant per-unit price pl, while agents with positive labor income can
purchase the good at a constant per-unit price ph, where

k + (1−Λh(ph))γh(ph) ≥ ph > pl ≥ k + (1−Λl(pl))γl(pl).

Without the subsistence constraint, the optimal mechanism in our framework becomes
simple. In particular, after ironing is ruled out by the regularity conditions, it is always
optimal to sell the good to each group at a single price.16 If income taxes are set to the max-
imal level (subject to maintaining the high-ability agents’ incentive to work), then prices

16Like with our anti-ironing condition from Theorem 2, the assumption that (13) is non-decreasing when-
ever it is negative is mathematically restrictive but not essential for our results. The simplicity of the mecha-

22



are in fact the same for both groups; but when income taxes leave high-ability agents with
a strictly positive surplus from working, the price for the good faced by agents with la-
bor income (i.e., high-ability agents) is higher than the price faced by agents with no labor
income (i.e., low-ability agents).

In case 1, efficiency in the goods market is generically suboptimal when either Assump-
tion A2 or A3 fails. Indeed, efficiency in the goods market obtains only if the average
welfare weight on agents buying the good, Λ(p), is equal to the unconditional average of
1—and when welfare weights depend directly on the taste type (i.e., when Assumption A2
is violated), Λa(t) (and hence its average over a) will typically diverge from 1. Moreover,
even if welfare weights do not depend on the taste type directly, Λ(p)might deviate from
1 if taste types are correlated with ability types (i.e., when Assumption A3 is violated).

For intuition, suppose that λ̄h = 0, so that the designer only cares about low-ability agents,
and that all low-ability agents have the same welfare weight (Assumption A2 holds). It is
then straightforward to show that

Λ(p) < 1 ⇐⇒
1− Fl(p)

µl(1− Fl(p)) + µh(1− Fh(p))
< 1 ⇐⇒ Fl(p) > Fh(p).

That is, the good is taxed if low-ability agents have a lower distribution of the taste type
(in the sense of first-order stochastic dominance), and is subsidized if low-ability agents
have a higher distribution of the taste type. In both cases, the designer uses the market for
the good to transfer more resources from high-ability agents to low-ability agents, relying
on the statistical dependence between taste and ability. Note the role played by taste het-
erogeneity: Although the designer cannot take away more resources from all high-ability
agents directly (their income is already taxed as much as is possible while still satisfying the
incentive constraints), she can transfer more resources away from high-ability agents with
high taste by taxing the good (when high-ability agents have higher taste on average) or
from high-ability agents with low taste by lowering the lump-sum transfer and subsidizing
the good instead (in the case that low-ability agents have higher taste on average).

In case 2, the allocation of the good is never efficient because high-ability agents face a
strictly higher price than low-ability agents (hence, it cannot be that both prices are equal
to marginal cost). The mechanism can be implemented as a means-tested subsidy for the
good (in the sense that the subsidy is only available to agents who have no earnings). For

nism is of course driven by the linearity of our model, which in particular implies that agents with the same
taste choose the same consumption bundle regardless of their income. We certainly do not claim that offering
a single quality at a single price is a policy recommendation emerging from our analysis. Rather, we point
out that even when other forces (e.g., income effects) are turned off, violation of either Assumption A2 or A3
leads to an optimal adjustment of prices away from marginal costs.
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this mechanism to be incentive-compatible, earnings cannot be taxed maximally, which is
why the tax rate is strictly below 1− 1/h.

To provide further intuition, it is instructive to consider the benchmark case in which ability
is observed (but revenue is still valued at the average welfare weight of 1). Then, it is
optimal to offer quality 1 to agents with ability a at price p⋆a that (at an interior solution)
must satisfy17

p⋆a = k + (1−Λa(p⋆a))γa(p⋆a), a ∈ {l, h}. (14)

Under Assumption (12), p⋆h > p⋆l . However, to implement ph > pl when ability is not ob-
served, the designer must provide enough rents to high-ability types to maintain incentive
compatibility—and the larger the gap ph − pl, the larger the rent that high-ability agents
must receive in the labor market. This creates a trade-off and implies that the optimal
prices ph and pl will be closer together than the benchmark prices p⋆h and p⋆l given by (14).

It remains to discuss the determinants of which of the two candidate optimal mechanisms
is used. The result below shows that both mechanisms are sometimes optimal, and the
choice between them depends on whether the designer has a strong motive to redistribute
across ability types.

Proposition 1. Parametrize the welfare weights by λa(t) ≡ λ̄a ⋅ωa(t), where ωa(t) is a function
with mean 1 with respect to distribution Fa, and λ̄h = (1 − µlλ̄l)/µh (to keep the overall aver-
age welfare weight normalized to 1). Suppose that the assumptions of Theorem 3 hold, and that
(t − k − (1−Λl(t))γl(t)) fl(t) is non-decreasing whenever it is positive, for any λ̄l ≥ 1. Then,
there exists a cutoff value λ̄0

l ≥ 1 such that mechanism 1 from Theorem 3 is optimal if λ̄l > λ̄0
l and

mechanism 2 is optimal if λ̄l < λ̄0
l (moreover, λ̄0

l > 1 if inequality (12) is strict for all interior t).

For intuition, recall that the planner would in general benefit from using income-dependent
prices in the market: Income reveals information about ability, and formula (14) shows that
conditioning prices on ability is useful whenever social welfare weights depend on taste
differently for low- and high-ability agents (Assumption A2 fails) or ability is correlated
with taste (Assumption A3 fails). This observation is in fact a straightforward extension
of the classical idea of third-degree price discrimination, which has been studied in de-
tail in the context of inequality-aware market design by Akbarpour r⃝ al. (2024). The key
difference is that income in our setting is not exogenous, leading to a trade-off: More in-
come redistribution through the income tax tightens the incentive-compatibility constraint
between high- and low-ability agents, restricting the use of income as an observable char-
acteristic used for third-degree price discrimination in the goods market.

17This follows, for example, from the analysis of Akbarpour r⃝ al. (2024) by replacing their fixed-supply
assumption with a constant marginal cost.
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The trade-off explains the comparative statics in Proposition 1. The weight λ̄l determines
the strength of the planner’s vertical redistributive preferences, and hence the benefits from
redistributive income taxation. When λ̄l is high, the planner is primarily concerned with
redistribution from high- to low-ability agents. In such cases, the income tax should be
maximally redistributive and, as a result, income cannot be used for price discrimination
in the goods market—mechanism 1 is used. In contrast, when λ̄l is close to 1 (and hence
to λ̄h), the social cost of limiting the redistribution through the income tax is small. Then,
the planner finds it optimal to lower income taxes (introducing slack in the incentive con-
straint) in order to implement income-dependent goods prices (up to the point at which
the incentive constraint binds again)—mechanism 2 is used.

One takeaway is that when Assumptions A2 and A3 are violated, income taxation and
redistribution through markets become to some extent substitutes. This is because their
degree is jointly limited by a common incentive constraint: Sometimes the income tax is
scaled down to allow for the use of an additional instrument in the market design, and
sometimes market design avoids using this instrument to allow for more redistribution via
the income tax.

5 General Structure of the Optimal Mechanism

In this section, we explore the general structure of optimal mechanisms in the simplified
setting introduced in Section 4. In particular, we uncover the reasons for the relatively
simple mechanism form identified in Theorems 2 and 3, and sketch the proofs of these
results. The main goal here is to explain the key technical ideas behind our construction
that could be useful in studying similar multidimensional screening problems.

We center our discussion in this section around the following result that predicts the form
of the optimal mechanism in the absence of any regularity conditions:

Proposition 2. In the framework of Section 4, there always exists an optimal mechanism in which:

1. Low-ability agents consume one quality of the good: xl(t) ∈ {0, ql}, where ql ∈ (0, 1];

2. High-ability agents consume at most three distinct qualities of the good: xh(t) ∈ {0, qi, ql, qh},
where 0 ≤ qi ≤ ql ≤ qh;

3. If the subsistence constraint does not bind, then the highest quality consumed is 1: If cl(t̄) > c,
then ql = qh = 1, and if ch(t̄) > c, then qh = 1;
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4. High-ability agents either (i) receive a post-tax wage equal to the cost of labor provision but
face a weakly better average price for the good consumed by low-ability agents, or (ii) receive
a post-tax wage strictly higher than the cost of labor provision but face a higher average price
for the good consumed by low-ability agents: Whenever ql ∈ Im(xh), either

(a) ch(0) − z̄
h = cl(0) and ph(ql) ≤ pl(ql), or

(b) ch(0) − z̄
h > cl(0) and ph(ql) > pl(ql).

Note that Proposition 2 describes the optimal direct mechanism. Given the linearity of
our model, discrete quality choices can be decentralized with a piece-wise linear—and
potentially income-dependent—price schedule similar to the one described in Theorem 2.

In an optimal mechanism, low-ability agents face a simple choice (recall that they do not
work, by Lemma 1). They receive a lump-sum transfer, equal to cl(0), and decide whether
to buy the good with quality ql at a per-unit price of pl, or spend their entire disposable
income on the numeraire. Whether ql = 1 or ql < 1 depends on whether the subsistence
constraint binds: ql < 1 can only be optimal if high-taste low-ability agents consume at the
subsistence level.

High-ability agents face a potentially more complicated choice: They choose from up to
three distinct quality levels. First, intermediate-taste high-ability agents consume the same
quality ql as low-ability agents as a result of the binding downward IC constraint (in abil-
ity). Second, when the subsistence constraint binds for low-ability agents so that ql < 1,
a higher quality qh ∈ (ql, 1] is offered to the highest-taste high-ability agents who can af-
ford it because of their labor income. If high-ability agents are sufficiently productive, the
subsistence constraint is slack for them, and qh is equal to the maximal quality 1 (as in Theo-
rem 2). Finally, the lowest quality level qi is needed if the optimal solution requires ironing.
Intuitively, if the planner’s objective function is non-monotone in the taste type, it may be
preferable to satisfy the downward IC constraint (in ability) by offering a low-quality good
at a low price to high-ability agents (this possibility is ruled out by the regularity conditions
imposed in Theorems 2 and 3).

Finally, the price for quality ql may be different for the two ability types in the optimal
mechanism. The trade-off was already explained in the context of Theorem 3. In case (i),
the planner maximizes the income tax paid by high-ability agents subject to all of them
working (which is optimal by Lemma 1) and is hence constrained to offer them a weakly
lower price for the good. In case (ii), the income tax is reduced and a strictly better price
for quality ql is offered to low-ability agents.
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5.1 Sketch of argument

The proof of Proposition 2—which is then specialized to prove Theorems 2 and 3—is rela-
tively involved but can be decomposed into several steps, most of which use familiar ideas.
First, we reduce the problem to maximizing the welfare function over allocation rules xl(t)
and xh(t) that are monotone in t, using the envelope formula to express consumption of
the numeraire in terms of the allocation rules and ability-specific lump-sum transfers. We
use the resource constraint to pin down the lump-sum transfer to the low-ability agents.

Second, we argue that the subsistence constraints can only bind for the highest–taste type
within each ability level. This is intuitive, as agents with the same ability share the same
disposable income, by Lemma 1. This observation allows us to incorporate all subsis-
tence constraints into the objective function via a pair of Lagrange multipliers, after we
parametrize the highest quality level consumed by each ability type. In the final stage
of the construction, we optimize over these highest quality levels; intuitively, the highest
quality level is 1 (the maximal consumption of good x) if the subsistence constraints for the
given ability type turn out to be slack, but it is interior otherwise.

Third, we argue that the incentive constraint preventing low-ability agents from pretend-
ing to have high ability is slack (as a consequence of Lemma 1). The opposite constraint
generally binds but—conditional on misreporting ability—high-ability agents find it opti-
mal to report their taste truthfully. This key step reduces the incentive constraints in our
multidimensional model to two standard one-dimensional constraints (within each abil-
ity level) and an outside-option–like constraint for the high-ability agents: High-ability
agents must receive a minimal utility level pinned down by the allocation to low-ability
agents with the corresponding taste type. Fixing the allocation rule for low-ability agents,
our problem thus becomes a standard one-dimensional screening problem with a type-
dependent outside option (as in Jullien (2000)).

Fourth, we fix the allocation of low-ability agents and solve for the optimal allocation rule
for high-ability agents. We rely on an ironing technique—recently introduced by Dwor-
czak and Muir (2024)—that extends the analysis of Myerson (1981) to problems with type-
dependent outside options. The key take-away is that the allocation rule for high-ability
agents is linear in their outside option, i.e., in the allocation rule for low-ability agents.

Fifth, we maximize the Lagrangian over the allocation rule for low-ability agents, account-
ing for how that choice affects the optimal allocation rule for high-ability agents. As a
consequence of the previous step, this problem is linear, with no constraints. By a standard
argument, the optimal allocation rule for low-ability agents is therefore a posted price for
a single quality level (pinned down by the subsistence constraint).
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Sixth, we show that the allocation rule for high-ability agents derives its simple structure
from the cutoff allocation rule for low-ability agents. Up to two additional quality (and
price) levels may be needed for high-ability agents: a lower quality may be introduced by
the ironing procedure, while a higher quality level may be required due to a more permis-
sive subsistence constraint—consistent with the informal discussion of Proposition 2.

Finally, part 4 of Proposition 2 follows from the optimal choice of a lump-sum payment to
high-ability agents. Intuitively, the planner faces a trade-off: She can satisfy the endoge-
nous outside-option constraint for high-ability agents (created by the allocation to low-
ability agents) by either (i) increasing the allocation to high-ability agents, or (ii) giving
those agents a higher monetary payment (implemented in an incentive-compatible way
as a reduction in income taxes). The generalized ironing procedure determines how to
optimally use options (i) and (ii), leading to the two cases in part 4 of Proposition 2.

5.2 Literature notes

As the proof sketch makes clear, the tractability of our model relies crucially on the simpli-
fying assumption of a binary ability type (with an incentive constraint that can only bind
in one direction). A mathematically similar structure arises in the so-called “FedEx prob-
lem” in which agents differ in their (continuous) value for receiving a package, as well as
a discrete (possibly binary) deadline by which they need to receive it. Relying on duality
techniques, Fiat et al. (2016) derived the structure of the revenue-maximizing mechanism
in such an environment; Saxena et al. (2018) showed that the number of prices required for
full optimality grows exponentially with the number of “deadline” types, suggesting that
the optimal mechanism in our framework would become increasingly complex to describe
with more ability types.

Ahlvik et al. (2024) solved a multidimensional screening problem (assuming no bunching
in the solution) in a model with a binary (and deterministic) choice in the goods market.
We instead assume that productivity is binary but allow for continuous types and choices
in the goods market. This makes the two papers complementary: we obtain a richer design
of the goods market (e.g., with several levels of consumption, rationing etc.), while Ahlvik
et al. (2024) obtain richer predictions about the optimal income tax schedule. Additionally,
the techniques used to solve the respective problems are different (Ahlvik et al. (2024) rely
on first-order conditions using a perturbation approach and optimal-control methods).

Our way of modeling the subsistence constraint (as a means of relaxing Assumption A1)
connects our framework to models with budget-constrained agents. Most closely related
is the work of Che et al. (2013) and Li (2021) who studied optimal allocation of resources
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when agents differ in values for the good and budgets (with Li (2021) additionally allow-
ing for costly verification of the agents’ types). The main similarity is the emergence of
“rationing” (which we interpreted as interior levels of quality) resulting from the need to
satisfy the subsistence/ budget constraint. The main difference is that these papers study
efficient allocations, without the redistributive concerns that are the core focus of our work.

Another benchmark for our analysis is that of Dworczak r⃝ al. (2021) who solved an anal-
ogous market-level redistribution problem without integrating income taxation. The op-
timality of offering a single quality to low-ability agents (and at most three quality levels
to high-ability agents) is a consequence of the assumption of constant marginal cost in our
framework; if, instead, we had assumed a fixed supply of goods as in Dworczak r⃝ al. (2021),
an additional quality level might be needed in the optimal mechanism.18 (Avoiding this
additional complexity in the optimal mechanism is why we decided to work with a fixed–
marginal cost model, which is also closer to the original work of Atkinson and Stiglitz
(1976).) With a fixed supply and linear utilities as in the setting of Dworczak r⃝ al. (2021),
rationing (i.e., an interior quality level) is always inefficient. In our model, rationing may
be efficient for agents whose numeraire consumption is at subsistence—and instead, inef-
ficiency is manifested by the price diverging from marginal cost.

6 Concluding Remarks

We investigated the problem of joint design of income taxation and goods markets us-
ing a mechanism design framework, and showed that goods market interventions play an
important role in balancing equity and efficiency under redistributive preferences. Mar-
ket interventions are generally useful when consumption decisions reveal welfare-relevant
information, due to consumption tastes generating heterogeneity in marginal utilities in
disposable income, correlating with ability, or directly entering the social welfare weights.
In each of these cases, restricting attention to income taxes means giving up on additional
information revealed by market behavior, and hence not achieving the second best.

Our work provides qualified theoretical support for several types of observed market inter-
ventions. First, we showed that nonlinear pricing of goods and services (with subsidies or
in-kind transfers of low qualities and taxes on high qualities) can complement optimal non-
linear income taxation. This conclusions hold in particular when individuals differ in their
marginal utilities of disposable income (e.g., because of different needs) and purchases of

18Mathematically, the Dworczak r⃝ al. (2021) way of modeling scarcity is closely related to ours because a
fixed supply constraint results in a Lagrange multiplier that enters the problem in the same way as a constant
marginal cost. However, the need to satisfy the supply constraint may result in the optimal mechanism being
a convex combination of different maximizers of the Lagrangian (see, e.g., Doval and Skreta (2024)).
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certain qualities of goods act as a signal of high marginal utility. This may be arguably
the case for essential goods and services that constitute a large share of some households’
budgets, like housing or healthcare. And indeed, many countries have programs guaran-
teeing access to low-quality housing and healthcare to all citizens, while often imposing
sales taxes on transactions in the private market.

Second, differential commodity taxation may be useful—along the lines suggested by Di-
amond (1975)—even in the presence of an optimally designed income tax. That happens
when goods purchases provide additional information about welfare weights, on top of
what can be inferred from the level of earnings. For example, a redistributive government
that already imposes a strongly progressive income tax can reap further equity gains with
a tax on goods and services catering to high-ability individuals.

Finally, when the redistributive social preferences across the income distribution are not
very strong, it may be optimal to use means-tested programs, potentially in combination
with sales taxes on private transactions—effectively using income for price discrimination
in certain goods markets. For example, it may be optimal to offer programs such as food
stamps in the United States, where low income is a primary eligibility criterion. At the
same time, however, our framework suggests that income taxes should become less pro-
gressive in response to the introduction of such programs.

We would like to stress that our framework is designed to understand the equity-efficiency
trade-off at the most primitive, abstract level, rather than to directly inform policy. Any
market intervention is associated with costs and drawbacks that are not captured by our
model. Moreover, second-best policy—as is typically the case in other models as well—
depends on parameters of the population distributions and social preferences in a poten-
tially sensitive way. Thus, empirical research is necessary both to quantify the gains and
costs, and to correctly calibrate the policy responses.

Several decades after the original work of Atkinson and Stiglitz (1976), conventional eco-
nomic wisdom seems to have embraced the idea of redistributing with income taxes rather
than through goods markets. We believe this intuition needs to be revisited. A growing lit-
erature has already pointed out that the Atkinson-Stiglitz theorem may lead to flawed pol-
icy recommendations in realistic scenarios. Our paper employs mechanism design to study
the interaction between the income tax and the design of goods markets; this approach re-
veals not just that market interventions are a useful complement to income taxation but
also how the optimal form of market interventions depends on economic circumstances.
Consequently, examining the detailed structure of market-level redistributive policies re-
mains an important question for future research.
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A Proofs

A.1 Proof of Theorem 1

Let (c⋆, x⋆, z⋆) be an optimal mechanism for the planner; then, (c⋆, x⋆, z⋆) maximizes the
Lagrangian, for some Lagrange multiplier α > 0 on the resource constraint,19

∫ λ(θ)U(c(θ), x(θ), z(θ)), θ) dF(θ) + α∫ [z(θ) − c(θ) − k ⋅ x(θ)] dF(θ) (15)

over all incentive-compatible mechanisms:

U(c(θ), x(θ), z(θ)), θ) ≥ U(c(θ′), x(θ′), z(θ′)), θ), ∀θ, θ′ ∈ Θ. (16)

Suppose that (c⋆, x⋆, z⋆) distorts goods choices, that is, it violates condition (6) for a positive
measure of types. We will find an incentive-compatible mechanism that strictly increases
the value of the Lagrangian, which will contradict the optimality of (c⋆, x⋆, z⋆).

Let L⋆ be the value of the Lagrangian (15) achieved by (c⋆, x⋆, z⋆). We will construct a
mechanism that improves this value in two steps. First, we consider a relaxed problem
in which some incentive-compatibility constraints are dropped, and argue that a solution
to the relaxed problem achieves a value of (15) strictly above L⋆. Second, we construct an
implementation of that relaxed solution that satisfies all the incentive-compatibility con-
straints.

Consider a relaxed problem in which the planner can observe the taste type, that is, incentive-
compatibility constraints only apply to the ability type:

U((c(t, a), x(t, a), z(t, a)), t, a) ≥ U((c(t, a′), x(t, a′), z(t, a′)), t, a), ∀t ∈ Θt, a, a′ ∈ Θa. (17)

Intuitively, when the planer can observe the taste type t, the standard Atkinson-Stiglitz
theorem applies conditional on every t: Distortions in goods markets are redundant.20

Formally, we rely on the results from Doligalski et al. (2024) that extend the logic of the
Atkinson-Stiglitz theorem to general mechanism-design problems in which some decisions
are “incentive-separable.” Under the relaxed incentive constraint (17), consumption deci-
sions are incentive-separable; thus, by Lemma 1 and Lemma 2 in Doligalski et al. (2024),
any mechanism can be weakly improved upon by a mechanism that (i) achieves the same

19Under Assumption A1, the Lagrange multiplier α must be 1 if strong duality holds.
20Note that we assumed additive separability of utility functions which is stronger than weak separability

required for the Atkinson-Stiglitz theorem.

35



utilities for all agents, (ii) achieves higher revenue ∫ [z(θ) − c(θ) − k ⋅ x(θ)] dF(θ) (strictly,
if the original mechanism distorted the goods markets), and (iii) can be implemented by
letting agents purchase goods at their marginal costs subject to type-dependent budgets
m(θ).21 It is thus without loss of generality to restrict attention to mechanisms with these
properties when solving the relaxed problem. Let

v⋆(t) =max
x
{v(x, t) − k ⋅ x}

denote the indirect utility from the efficient allocation of goods x to an agent with taste
type t (relying on Assumption A1 to simplify the definition). Define disposable income as
m = c + k ⋅ x. Using Assumptions A1–A3, the relaxed problem on the subset of mechanisms
satisfying property (iii) takes the form:

sup
m,z

x
λ̄(a) [m(t, a) + v⋆(t) −w(z(t, a), a)]dFt(t)dFa(a) + α

x
[z(t, a) −m(t, a)] dFt(t)dFa(a)

(18)
subject to

m(t, a) −w(z(t, a), a) ≥ m(t, a′) −w(z(t, a′), a), ∀t ∈ Θt, a, a′ ∈ Θa. (19)

Moreover, we know that the value of this relaxed problem strictly exceeds L⋆, by properties
(i) and (ii), since (c⋆, x⋆, z⋆) distorts goods choices. Note that the objective function (18)
can be maximized point-wise in t and that the term v⋆(t) does not affect the solution. As
a result, we can find a feasible allocation (m̃, z̃) that does not depend on t (none of the
remaining terms in the objective or constraints depend on t) and achieves a value L > L⋆.22

This finishes the first step.

Under the mechanism (m̃, z̃) that we constructed, agents report their ability a, and are
recommended to choose earnings z̃(a) that lead to a disposable income m̃(a) (by the tax-
ation principle, this step can be achieved by imposing a nonlinear income tax on z); then,
they spend their disposable income m̃ optimally on consumption of c and x priced at
marginal costs. Denote the resulting allocation rule by (c, x, z). In the second step, we
prove that the direct mechanism (c, x, z) satisfies all incentive constraints (16); since by
construction (c, x, z) achieves a higher value of the Lagrangian than (c⋆, x⋆, z⋆), this will

21Doligalski et al. (2024) make an additional assumption that the utility each agent receives from the initial
mechanism is higher than the utility from consuming nothing—this is needed for consumer duality to hold;
we do not need that assumption because of Assumption A1 which is sufficient for consumer duality.

22We could take (m̃, z̃) to be an optimal mechanism for the relaxed problem if not for the fact that we have
not guaranteed existence of solutions to the relaxed problem; for our purposes, it suffices to take a feasible
mechanism that achieves a higher value of the objective than the original mechanism (c⋆, x⋆, z⋆).
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finish the proof.23

Using Assumption A1, we have, for all θ, θ′ ∈ Θ,

U(c(θ), x(θ), z(θ)), θ) = c(t, a) + v(x(t, a), t) −w(z(t, a), a) = m̃(a) −w(z̃(a), a) + v⋆(t)

≥ m̃(a′) −w(z̃(a′), a) + v(x(t′, a′), t) − k ⋅ x(t′, a′)

= c(a′, t′) + v(x(t′, a′), t) −w(z̃(a′), a) = U(c(θ′), x(θ′), z(θ′)), θ),

where the key inequality follows from two observations. First, m̃(a) −w(z̃(a), a) ≥ m̃(a′) −
w(z̃(a′), a) by inequality (19); second, v⋆(t) ≥ v(x, t) − k ⋅ x for any x by definition of v⋆(t).

A.2 Proof of Lemma 1

It is without loss of generality to assume that zl(t) = 0 (given the welfare objective function
and the fact that l = 0). Thus, we only have to solve for the earnings choice of high-ability
agents. We will prove that it is optimal to choose zh(t) = z̄ for all t. Suppose that it is not the
case. Then, we can adjust all high types’ allocations so that their zh(t) increases to z̄ and
their ch(t) increases just enough to make their overall utility unchanged. This adjustment
does not affect the objective function and relaxes the resource constraint (as well as the IC
constraints of low-ability types). Since the relaxation of the resource constraint is strict, and
increasing the lump-sum payment increases social welfare, it is always strictly preferred to
set zh(t) ≡ z̄.

A.3 Proof of Proposition 2

Consider the incentive constraints (8). Since all high-ability agents work (by Lemma 1),
low-ability agents cannot mimic the high-ability agents. By standard arguments, their in-
centive constraint can be represented as a monotonicity constraint on the allocation xl(t)
and an integral condition pinning down consumption cl(t) (up to a lump-sum payment).
Letting Tl ∶= cl(0) denote the lump-sum payment to low-ability agents, we have:

xl(t) is non-decreasing, cl(t) + txl(t) = Tl +∫
t

0
xl(τ)dτ.

The constraint cl(t) ≥ c can only bind for the highest taste type t = t̄, since the above
representation implies that cl(t) is non-increasing in t. Therefore, the constraint cl(t) ≥ c

23Note that the proof already establishes that any optimal mechanism can be decentralized via a (possibly
nonlinear) income tax and a competitive goods market in which all goods are priced at marginal costs.
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for all t ∈ [0, t̄] is equivalent to requiring

Tl +∫
t̄

0
xl(t)dt − t̄xl(t̄) ≥ c.

The incentive constraint for high-ability agents preventing them from misreporting their
taste type alone leads to a similar representation (let Th ∶= ch(0)):

xh(t) is non-decreasing, ch(t) + txh(t) = Th +∫
t

0
xh(τ)dτ, Th +∫

t̄

0
xh(τ)dτ − t̄xh(t̄) ≥ c.

However, we must additionally satisfy the incentive constraint that high-ability agents do
not want to mimic one of the low-ability types, which can now be represented as

Th +∫
t

0
xh(τ)dτ − z̄

h
≥ Tl +∫

t′

0
xl(τ)dτ + (t − t′)xl(t′), ∀t, t′ ∈ [0, t̄].

Note that

∫
t′

0
xl(τ)dτ + (t − t′)xl(t′) ≤ ∫

t

0
xl(τ)dτ

by the monotonicity of xl(t) in t, and hence—conditional on misreporting the ability type—
it is optimal to report the taste type truthfully. Thus, the constraint simplifies to

Th +∫
t

0
xh(τ)dτ − z̄

h
≥ Tl +∫

t

0
xl(τ)dτ,∀t. (20)

Next, using the above formulas for ca(t), and after a few standard transformations (inte-
gration by part), we can rewrite the objective function (up to a term that is constant in the
remaining choice variables) as

∑
a∈{l, h}

µa (λ̄aTa + µa ∫ Λa(t)γa(t)xa(t)dFa(t)) ,

where γa(t) = (1− Fa(t))/ fa(t) is the inverse hazard rate and Λa(t) = E [λa(t̃)∣t̃ ≥ t, a] is the
average welfare weight on types above t, conditional on ability a. Similarly, the resource
constraint (9) can be rewritten as

µhz̄ ≥ G + ∑
a∈{l, h}

µa (Ta +∫
t̄

0
(k − Ja(t)) xa(t)dFa(t)) ,

where Ja(t) = t −γa(t) is the virtual surplus function, conditional on ability a.

We reparameterize the problem by denoting T = Tl and ∆T = Th − z̄
h − T. That is, T is the
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lump-sum payment to all agents, and ∆T is the additional monetary payment that high-
ability agents receive on top of the lump-sum transfer and the compensation for disutility
of labor. By the incentive constraint (20), ∆T ≥ 0. Intuitively, when ∆T = 0, the post-tax
wage received by high-ability agents who work is just enough to offset the disutility from
labor that they incur (corresponding to case (a) in point 4 of Proposition 2); when ∆T > 0,
high-ability agents enjoy a strictly positive surplus from working (corresponding to case
(b) in point 4 of Proposition 2).

We summarize the progress made so far by restating the full problem as

max
xh(t), xl(t), T, ∆T≥0

T + µhλ̄h∆T + ∑
a∈{l, h}

µa ∫
t̄

0
Λa(t)γa(t)xa(t)dFa(t),

subject to

xl(t) is non-decreasing, T ≥ c + t̄xl(t̄) −∫
t̄

0
xl(τ)dτ,

xh(t) is non-decreasing, T + z̄
h
+∆T ≥ c + t̄xh(t̄) −∫

t̄

0
xh(τ)dτ,

∆T +∫
t

0
xh(τ)dτ ≥ ∫

t

0
xl(τ)dτ,∀t,

µhz̄ (1− 1
h
) ≥ G + T + µh∆T + ∑

a∈{l, h}
µa (∫

t̄

0
(k − Ja(t)) xa(t)dFa(t)) .

Let us parameterize the problem by imposing an additional constraint xl(t̄) ≤ x̄l and xh(t̄) ≤
x̄h, and optimizing separately over x̄l and x̄h. Intuitively, the need to bound the allocation
rule from above by a number less than 1 may come from the subsistence constraint. Note
that, as long as constraint (20) and the subsistence constraint hold for the low-ability agents,
we have

T + z̄
h
+∆T ≥ c + t̄xh(t̄) −∫

t̄

0
xh(τ)dτ + z̄

h
+ t̄(xl(t̄) − xh(t̄)).

It follows that we can increase xh(t̄) to be at least at the level of xl(t̄) while preserving the
subsistence constraint for the high-ability agents; thus, it is without loss of generality to
assume that x̄h ≥ x̄l. This argument also establishes that the subsistence constraint is slack
for high-ability agents if z̄/h ≥ t̄.

We solve the problem by introducing two Lagrange multipliers, ηl ≥ and ηh ≥ 0, on the
subsistence constraints for the low- and high-ability agents, respectively. The resource
constraint must hold with equality at the optimal mechanism, which allows us to substitute
T in the objective function. The Lagrangian—fixing x̄l and x̄h—is then maximized over
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non-decreasing xl(t) and xh(t), as well as ∆T ≥ 0,

max
xl(t)≤x̄l , xh(t)≤x̄h, ∆T≥0

∑
a∈{l, h}

µa ∫
t̄

0
[Λa(t)γa(t) +

ηa

µa fa(t)
+ (1+ ηl + ηh)(Ja(t) − k)] xa(t)dFa(t)

+ (µhλ̄h + ηh − (1+ ηl + ηh)µh)∆T,

subject to a single constraint

∆T +∫
t

0
xh(τ)dτ ≥ ∫

t

0
xl(τ)dτ,∀t.

First, we will derive the optimal xh(t) and ∆T holding fixed xl(t). Let

ϕh(t) ∶= (Λh(t)γh(t) +
ηh

µh fh(t)
+ (1+ ηl + ηh)(Jh(t) − k))µh fh(t),

ψ ∶= µhλ̄h + ηh − (1+ ηl + ηh)µh,

so that this auxiliary problem can be written succinctly as

max
xh(t)≤x̄h, ∆T≥0

∫
t̄

0
ϕh(t)xh(t)dt +ψ∆T

subject to

∆T +∫
t

0
xh(τ)dτ ≥ ∫

t

0
xl(τ)dτ,∀t.

Note that we must have ψ ≤ 0 as otherwise the problem would not have a solution.

The above problem is a linear mechanism design problem with a type-dependent outside
option constraint pinned down by the allocation rule for the low-ability agents. Such a
problem can be solved using existing techniques.

Lemma 2 (Dworczak and Muir (2024)). Define

Φh(t) = ∫
t̄

t
ϕh(τ)dτ and Φ̄h(t) = co(Φh)(t), ϕ̄h(t) = −Φ̄′h(t),

where co(⋅) is the concave closure of a function. Let t0 be defined as the smallest solution to ϕ̄h(t0) =
ψ (t0 = 0 if ϕ̄h(t) > ψ for all t), and let t1 be defined as the largest solution to ϕ̄h(t1) = 0 (t1 = t̄ if
ϕ̄h(t) < 0 for all t). (Note that t0 ≤ t1 because ϕ̄h(t) is non-decreasing.) Then,

max
xh(t)≤x̄h, ∆T≥0

{∫
t̄

0
ϕh(t)xh(t)dt +ψ∆T} = ∫

t1

t0
ϕ̄h(t)xl(t)dt + x̄h ∫

t̄

t1
ϕ̄h(t)dt +ψ∫

t0

0
xl(t)dt.
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Moreover, the optimal solution is given by

∆T⋆ = ∫
t0

0
xl(t)dt,

x⋆h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ t0,

xl(t) t ∈ [a, b] for every maximal [a, b] such that Φh ≡ Φ̄h on [a, b],
∫

b
a xl(τ)dτ

b−a t ∈ (a, b) for every maximal (a, b) such that Φh < Φ̄h on (a, b),

x̄h t ≥ t1.

Explaining Lemma 2 is beyond the scope of this paper.24 The important take-aways for
our purposes are that the problem of choosing the optimal xh(t) for a fixed xl(t) admits
a closed-form solution characterized by two cutoffs, t0 and t1, and (possibly) a number
of ironing intervals. Ignoring the possibility of ironing (formally, ironing is not needed if
ϕh(t) is monotone), the intuition for the cutoffs t0 and t1is as follows. The planner chooses
an allocation rule for high-ability agents to maximize welfare subject to delivering a certain
minimal level of utility to high-ability agents, where the lower bound on utility comes from
the possibility of mimicking a low-ability type. It is better to give a cash transfer ∆T⋆ to
types t ≤ t0 than to let these types consume the allocation for the low-ability agents. Note
that ∆T⋆ > 0 only if low-ability agents of taste type below t0 consume the good: xl(t) > 0 for
some t < t0. These considerations (after endogenizing xl(t)) ultimately determine whether
or not high-ability agents receive strictly positive surplus from working. For types t ∈
[t0, t1], it is optimal to satisfy the constraint by letting them consume what the low-ability
agents with analogous taste types consume (again, this is further complicated if ironing is
needed). Finally, types t ≥ t1 should consume the maximal amount x̄h regardless of the
outside option (here, we rely on the fact that x̄h ≥ x̄l ≥ xl(t) for all t).

Note that the definition of t0 and t1 does not depend on xl(t). The closed-form expression
for the maximized objective function thus allows us to maximize over xl(t) in the next step.
Let

ϕl(t) ∶= [Λl(t)γl(t) +
ηl

µl fl(t)
+ (1+ ηl + ηh)(Jl(t) − k)]µl fl(t).

Then, the problem of maximizing over xl(t) (assuming that xh(t) and ∆T are chosen opti-
mally for any xl(t), as described by Lemma 2), becomes (fixing x̄l)

max
xl(r)≤x̄l

∫
t̄

0
ϕl(t)xl(t)dt +∫

t1

t0
ϕ̄h(t)xl(t)dt + x̄h ∫

t̄

t1
ϕ̄h(t)dt +ψ∫

t0

0
xl(t)dt.

24The reader is referred to Dworczak and Muir (2024) for a discussion.
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This problem is linear in xl(t) with no additional constraints (other than monotonicity of
xl(t)), so there exists an optimal solution that takes the form xl(t) = x̄l1{t≥tl}

for some
tl (formally, these are the extreme points of the set of non-decreasing functions on [0, t̄]
bounded below by 0 and above by x̄l.)

Finally, consider maximizing the Lagrangian over x̄h and x̄l (at the optimal solution, with-
out loss of generality, xl(t̄) = x̄l and xh(t̄) = x̄h):

max
x̄l , x̄h
{x̄l ∫

t̄

tl
ϕl(t)dt + x̄l ∫

t1

t0
ϕ̄h(t)dt + x̄h ∫

t̄

t1
ϕ̄h(t)dt +ψx̄l(t0 − tl)+ − ηl x̄l − ηh x̄h} . (21)

The problem is linear. There are two possibilities. First, the subsistence constraint could
be slack for both ability types, in which case ηa = 0 and x̄a = 1, for a ∈ {l, h}. Moreover, if
the subsistence constraint is slack for low-ability agents, then it is also slack for high-ability
agents. Second, the subsistence constraint could bind (for low-ability types, or both types).
In that case, ηa is set so that the coefficient on x̄a in the Lagrangian (21) is zero; this allows
us to choose x̄a to satisfy the subsistence constraint with equality (by assumption, we re-
stricted attention to cases in which we can satisfy the subsistence constraint when agents
do not consume the good, so there is some intermediate level of consumption that satisfies
the constraint with equality). In either case, we conclude that the solution described above
is a solution to the original problem for some choice of ηl and ηh.

We are now ready to finish the proof of Proposition 2. Part 1 follows from the fact that the
optimal xl(t) is a cutoff allocation rule (we set ql = x̄l). Part 2 follows from the following
observation: Since the optimal xl(t) is a cutoff allocation rule, the optimal allocation rule
xh(t)—as predicted by Lemma 2—can take on at most one value, which we call qi, other
than 0, ql = x̄l, and qh ∶= x̄h. Specifically, qi ∈ (0, ql) if and only if tl ∈ (a, b) ⊆ (t0, t1) for
some maximal interval (a, b) such that Φh < Φ̄h on (a, b): then, qi = ql(b − tl)/(b − a). In
this sense, qi is a result of ironing that is required when the objective function ϕh(t) is not
monotone (so that Φh lies below its concave closure Φ̄h on some interval). Part 3 follows
from the analysis of Lagrange multipliers ηl and ηh above. Finally, to prove part 4, let us
separately analyze the form of the optimal mechanism when (a) tl ≥ t0, (b) when tl < t0.

In case (a), by Lemma 2, ∆T⋆ = 0. This means that Th = Tl + z̄/h or ch(0) − z̄/h = cl(0). By
incentive compatibility, pl(ql) = tl since type tl is the cutoff type consuming quality ql. To
determine the average prices paid by high-ability type, we consider three subcases:

(i) If t1 ≤ tl, then xh(t) = x̄h(t)1{t≥t1}
, so Im(xh) = {0, x̄h} and ph(qh) = t1 ≤ tl = pl(ql). If

ql ∈ Im(xh), then it follows that ql = qh and hence ph(ql) ≤ pl(ql).
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(ii) If t1 > tl and no ironing is required (qi is not offered), then it follows that xh(t) =
xl(t) = 1{t≥tl}

for all t ∈ (t0, t1), and hence pl(ql) = ph(ql) = tl.

(iii) If t1 > tl but ironing is required, then we have xh(t) = qi for t ∈ [a, b), xh(t) = ql for
t ∈ [b, t1), and xh(t) = x̄h for t ≥ t1, for some t0 ≤ a ≤ tl ≤ b ≤ t1. In this case, quality qi

must be offered at the average price a, and type b must be indifferent between buying
quality qi at a per-unit price of a, or buying ql at a per-unit price of ph(ql):

(b − a)qi = (b − ph(ql))ql ⇐⇒ tl = ph(ql).

We conclude that in all subcases when ql is offered to high-ability agents (ql ∈ Im(xh)), we
have ph(ql) ≤ pl(ql).

In case (b), ∆T⋆ = x̄l(t0 − tl) > 0, by Lemma 2. A further consequence of the lemma is
that—since xl is constant in [t0, t1]—xh must be equal to x̄l on [t0, t1], and hence Im(xh) ⊆
{0, ql, qh}. Since tl < t0, high-ability agents must face a higher per-unit price for consum-
ing ql.

Cases (a) and (b) above thus correspond to the analogous cases in Proposition 2, which
finishes its proof.

A.4 Proof of Theorem 2

The proof relies on Proposition 2 and its proof found in Appendix A.3.

We will construct a solution in which the subsistence constraint is slack for high-ability
agents and binds for low-ability agents (the condition on the aggregate resources in the
statement of the theorem ensures that we will be able to verify that property). Using the
notation from the proof of Proposition 2, we set ηl = η and ηh = 0.

First, we prove a technical lemma showing that under our regularity conditions, ironing is
not required in the optimal allocation rule for high-ability agents.

Lemma 3. Under the assumptions of Theorem 2, the solution described by Lemma 2 does not
involve ironing (ϕh = ϕ̄h in the relevant range).

Proof. Under the current assumptions, we have

ϕh(t) ≡ ((t − k)(1+ η)µh +ψ
1− F(t)

f (t)
) f (t),

ψ = −µh(1+ η − λh),
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where λh is the (constant) welfare weight on high-ability agents. We will first show that
ϕh(t) is non-decreasing over [t0, t1], so that ironing is not required in the optimal mecha-
nism, where t0 and t1 are defined by

(t1 − k)(1+ η)µh +ψ
1− F(t1)

f (t1)
= 0,

(t0 − k)(1+ η)µh −ψ
F(t0)
f (t0)

= 0.

(We will later verify that these definitions coincide with the definition in Lemma 2.) Note
that our regularity assumptions imply that t0 and t1 are uniquely defined (recall that ψ ≤ 0).

We need to show that, for t ∈ (t0, t1),

((1+ η)µh +ψγ′(t)) f (t) + ((t − k)(1+ η)µh +ψγ(t)) f ′(t) > 0.

We know that, in the relevant range,

ψ
F(t)
f (t)

< (t − k)(1+ η)µh < −ψ
1− F(t)

f (t)
.

When f ′(t) > 0, we have

((1+ η)µh +ψγ′(t)) f (t) + ((t − k)(1+ η)µh +ψγ(t)) f ′(t) > (ψ F(t)
f (t)
+ψ

1− F(t)
f (t)

) f ′(t) > 0.

When f ′(t) < 0, we have

((1+ η)µh +ψγ′(t)) f (t)+((t − k)(1+ η)µh +ψγ(t)) f ′(t) > (−ψ
1− F(t)

f (t)
+ψ

1− F(t)
f (t)

) f ′(t) = 0.

This shows that ϕh(t) is non-decreasing over [t0, t1].

Next, notice that ϕh(t) crosses zero once from below, and hence ϕh(t) ≥ 0 for all t ≥ t1.
Similarly, we want to show that ϕh(t) ≤ ψ for all t ≤ t0. For t ≤ t0,we have

((t − k)(1+ η)µh +ψ
1− F(t)

f (t)
) f (t) = ((t − k)(1+ η)µh −ψ

F(t)
f (t)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

f (t) +ψ ≤ ψ.

We have thus shown that ϕh(t) = ϕ̄h(t) over [t0, t1], and moreover that t0 and t1 defined
above coincide with those defined in Lemma 2. It follows that no ironing is needed: For a
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fixed xl, the optimal allocation rule for high-ability agents is given by

x⋆h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t < t0,

xl(t) t ∈ [t0, t1),

x̄h t ≥ t1.

Combining Lemma 3 with Proposition 2, we conclude that the optimal solution is param-
eterized by: tl, t0, t1, x̄l (which we keep fixed for now), and x̄h (which we conjecture will
be equal to 1). Note that as long as t0 < tl, the value of t0 does not affect the mechanism
(since xl(t) = 0 for t ≤ tl). Thus, it is without loss of generality to assume that t0 ≥ tl. Under
that assumption, we have ∆T⋆ = x̄l(t0 − tl). The resulting Lagrangian—which is maximized
over tl, t0, and t1—takes the form:

−(1+η) [µh x̄l ∫
t1

t0
(k − J(t)) dF(t) + µh ∫

t̄

t1
(k − J(t)) dF(t) + µl x̄l ∫

t̄

tl
(k − J(t)) dF(t)]−ηx̄ltl

−(1−λh+η)µh x̄l(t0− tl)+µlλl x̄l ∫
t̄

tl
γ(t)dF(t)+µhλh x̄l ∫

t1

t0
γ(t)dF(t)+µhλh ∫

t̄

t1
γ(t)dF(t).

(22)

We will argue that t0 = tl in the optimal mechanism. Since we know that t0 ≥ tl, towards
a contradiction, suppose that t0 > tl; then, the first-order conditions for optimal t0 and tl

must hold, which would require (after some transformations, and in particular substituting
λl = (1− µhλh)/µl):

(1+ η)(t0 − k) f (t0) + (1+ η − λh)F(t0) = 0,

(1+ η)(tl − k) f (tl) + (1+ η − λl)F(tl) = 0.

The first condition states that ϕh(t0) = ψ, and since t0 is the smallest solution to this equa-
tion, we know that ϕh(t) < ψ for all t < t0, and thus in particular,

(1+ η)(tl − k) f (tl) + (1+ η − λh)F(tl) < 0.

But this clearly contradicts the second condition (since λh ≤ λl).

Thus, we have proven that t0 = tl. In particular, ∆T⋆ = 0, so we are in case (a) in part 4 of
Proposition 2. The solution is characterized (up to pinning down x̄l and confirming that
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x̄h = 1) by the first-order conditions for optimal t0 and t1:

[(1+ η) (k − J(t0)) − h(t0)] f (t0) = η,

(1+ η) (k − J(t1)) = λhh(t1).

We can rewrite the FOCs as
t0 = k −

η

1+ η

F(t0)
f (t0)

,

t1 = k +(1− λh
1+ η

) 1− F(t1)
f (t1)

.

Note that, as long as η > 0, we have t0 < k < t1. In the indirect implementation, the per-unit
price pl = tl = t0 for quality x̄l = ql is thus below marginal cost. The total price ph(1) for the
good with quality 1 must make type t1 indifferent:

t1 − ph(1) = ql(t1 − pl) Ô⇒ ph(1) = plql + t1(1− ql).

This verifies point 3 of Theorem 2 if we define ph = t1 (note that ph is the revenue-maximizing
price if λh = 0). Note that the piece-wise linear price schedule from Theorem 2 implements
the same quality choices as the mechanism described here (because of linearity of agents’
utilities and the fact that the subsistence constraint for low-ability agents becomes binding
precisely when they consume a good with quality ql). Point 1 of Theorem 2 follows from
the fact that ∆T⋆ = 0 (the income tax makes high-ability agents indifferent between work-
ing or not). Finally, the binding subsistence constraint for low-ability agents implies that
cl(0) = c + plql, verifying point 2.

It remains to verify that (i) the subsistence constraint binds for low-ability agents (so that
η > 0) and (ii) the subsistence constraint is slack for high-ability agents (which will verify
our conjecture that ηh = 0 and x̄h = 1).

The resource constraint states that

µhz̄ (1− 1
h
) = G + T − µh(1− x̄l)(t1 − k)(1− F(t1)) − x̄l(t0 − k)(1− F(t0)).

Towards a contradiction, suppose that η = 0. Then, it is optimal to set x̄l = 1, t0 = t1 = k, and
the resource constraint becomes

µhz̄ (1− 1
h
) ≥ G + T.

Since low-ability agents do not work but can afford to buy one unit of the good at price k,
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it must be that T ≥ c + k. Thus, we must have

µhz̄ (1− 1
h
) ≥ G + c + k,

which is ruled out by the condition assumed in Theorem 2.

Finally, we make sure that in the solution we have constructed consumption of the high
ability agents exceeds the subsistence level. We know that T = c + t0x̄l. Thus, it suffices to
show that

c + t0x̄l +
z̄
h
≥ c + t0x̄l + t1(1− x̄l) ⇐⇒

z̄
h
≥ t1(1− x̄l).

A sufficient condition is that z̄/h ≥ t̄, which is what we assumed.

A.5 Proof of Theorem 3 and Proposition 1

The proof relies on Proposition 2 and its proof found in Appendix A.3.

Since we assumed that

ϕh(t) ≡ (t − k − (1−Λh(t))γh(t)) fh(t)

is non-decreasing whenever it is negative, it follows from Lemma 2 that no ironing is re-
quired to describe the optimal xh(t). Moreover, combining this observation with Proposi-
tion 2, we conclude that the allocation rule xl(t) takes the form 1{t≥tl}

, from which it follows
that xh(t) = 1{t≥th}

, for some th. It remains to characterize th and tl.

The optimization problem—based on the derivation in the proof of Proposition 2—becomes

max
th, tl

∑
a∈{l, h}

µa ∫
t̄

ta
(Ja(t) − k +Λa(t)γa(t)) dFa(t) − (1− λ̄h)µh(th − tl)+.

The FOCs for an interior solution (in particular, when th ≠ tl) are

FOC th ∶ −(1− λ̄h)1{th≥tl}
− (th − k − (1−Λh(th))γh(th)) fh(th) = 0,

FOC tl ∶
µh

µl
(1− λ̄h)1{th≥tl}

− (tl − k − (1−Λl(tl))γl(tl)) fl(tl) = 0.

We argue that it is without loss of generality to assume that the optimal th and tl satisfy
th ≥ tl. By assumption, t − k − (1 −Λh(t))γh(t) can cross zero from below at most once.
Conditional on th < tl, the point (or interval) at which t − k − (1 −Λh(t))γh(t) crosses zero
from below defines the optimal th (in case the crossing is an interval, we can without loss of
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generality take th to be the right end point of the interval, since every point in the interval
is optimal). But then assumption (12) guarantees that

t − k − (1−Λl(t))γl(t) ≥ t − k − (1−Λh(t))γh(t),

which implies that any tl satisfying the FOC under the hypothesis th < tl must in fact be
smaller than th.

We will consider the two cases, (i) th = tl and (ii) th > tl, separately.

In case (i), we immediately obtain that ∆T⋆ = 0 (which means that high-ability agents get
no utility surplus from working or, equivalently, that income is taxed at the rate 1− 1/h per
unit of earnings) and that all agents face the same price p in the market. This price p must
be equal to th = tl. Since the same mechanism is offered to low- and high-ability agents,
we can use the unconditional distribution F of taste types. Let us also denote by Λ(p) the
unconditional (over ability types) expectation of the welfare weight on agents with taste
type above p. The FOC for that price p is

p − k − (1−Λ(p))γ(p) = 0,

which gives us the formula from point 1 in Theorem 3.

In case (ii), we conclude that ∆T⋆ > 0, so that high-ability agents receive a strictly positive
surplus from working. In this case, the two FOCs must hold, and thus (using the fact that
λ̄h ≤ 1)

th − k − (1−Λh(th))γh(th) ≤ 0,

tl − k − (1−Λl(tl))γl(tl) ≥ 0.

This gives us the string of inequalities on the prices from point 2 in Theorem 3.

Finally, we prove Proposition 1. Under the additional assumptions we made, the first-
order conditions described above are necessary and sufficient (under the convention that
the equality becomes an inequality at the boundaries 0 or t̄). Therefore, mechanism 2 is
optimal for welfare parameters (λ̄h, λ̄l) (that must satisfy µhλ̄h + µlλ̄l = 1) if there exists a
solution to the system of equations

Hh(λ̄h, th) ≡ λ̄h − 1− (th − k − (1−Λh(th))γh(th)) fh(th) = 0,

Hl(λ̄l, tl) ≡ λ̄l − 1− (tl − k − (1−Λl(tl))γl(tl)) fl(tl) = 0,

that satisfies th > tl. Our goal is to show that if a solution exists for some λ̄l, then it must
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also exist for all lower λ̄l.

First, note that Hh(λ̄h, th) is non-increasing in th in the relevant range (since we assumed
that its second term is non-decreasing whenever it is negative). Furthermore, Hh(λ̄h, th) is
non-decreasing in λ̄h:

∂Hh(λ̄h, th)
∂λ̄h

= 1−∫
t̄

th
ωh(t)dFh(t) = ∫

th

0
ωh(t)dFh(t) ≥ 0.

Thus, when λ̄l goes down, λ̄h goes up (since µhλ̄h + µlλ̄l = 1), and the first-order condition
can be satisfied either by keeping th constant or by increasing it, potentially all the way to
t̄ (at which point the first-order condition may hold as inequality).

Using analogous reasoning as before, we argue that the first-order condition Hl(λ̄l, tl) = 0
can be satisfied with lower λ̄l by either keeping tl constant or decreasing it. First, Hl(λ̄l, tl)
is non-increasing in tl in the relevant range, which follows from the assumption made in
the proposition. Second, Hl(λ̄l, tl) is non-decreasing in λ̄l:

∂Hl(λ̄l, tl)
∂λ̄l

= 1−∫
t̄

tl
ωl(t)dFl(t) = ∫

tl

0
ωl(t)dFl(t) ≥ 0.

Thus, when λ̄l goes down, the first-order condition can be satisfied either by keeping tl

constant or by decreasing it, potentially all the way to 0. Therefore, we can find a solution
to the system of first-order conditions that respects th > tl.

We conclude that there exists a cutoff λ̄0
l ∈ [1, ∞] such that mechanism 2 is optimal if

λ̄l < λ̄0
l and mechanism 1 is optimal if λ̄l > λ̄0

l . The case λ̄0
l = ∞ can be ruled out: When λ̄l

becomes sufficiently large, the second condition cannot hold and thus mechanism 1 must
be optimal. On the other hand, λ̄0

l = 1 can be ruled out when inequality (12) is strict for all
interior t. As λ̄l converges to 1, λ̄h must also converge to 1, and inequality (12) then implies
that the solution to the system of first-order conditions must satisfy th > tl.
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Online Appendix

In Appendix OA we prove a version of Theorem 1 under weaker assumptions than in
the main body. Appendix OB describes the properties of Pareto efficient allocations in the
simplified framework from Section 4. Finally, in Appendix OC we characterize the optimal
goods market distortions under a strictly concave utility from numeraire.

OA Theorem 1 under weaker assumptions

In this appendix, we prove a version of Theorem 1 while weakening a number of assump-
tions made in the main body. Specifically, we do not identify any of the goods as a nu-
meraire; we relax some restrictions on agents’ utility functions (including quasi-linearity);
we prove the existence of an improving mechanism with efficient allocation of goods; and
our argument does not rely on the validity of the Lagrangian representation of the plan-
ner’s problem (strong duality). The role of the extension is to show that the simplifying
assumptions made in the main text do not play a major economic role in our overall anal-
ysis; the generalized setup supports the argument that knife-edge conditions appear to be
needed to extend the Atkinson-Stiglitz conclusion to multidimensional settings.

OA.1 Main result

An agent consumes a vector of L goods x ∈ X = ΠL
i=1[xi,∞), where xi ∈ R ∪ {−∞} for all

i ∈ {1, ..., L}, and earns z ∈ R+. The utility function is U(x, z, t, a) which is continuous in
(x, z) and locally non-satiated in x.

The following assumption relaxes the additive separability between consumption and earn-
ings that we imposed in the main body of the paper. This “weak separability” assumption
is required by the Atkinson-Stiglitz theorem even in one-dimensional case.

Assumption A0. The ability type does not affect the marginal rate of substitution between goods:
U(x, z, t, a) ≡ U(v(x, z, t), z, a), for some functions U and v, with U strictly increasing in the first
argument.

Denote the indirect utility function of type (t, a)with disposable income m, earnings z, and
facing goods’ prices equal to the marginal costs by

V(m, z, t, a) ∶=max
x∈X
{U(x, z, t, a) ∶ x ⋅ k ≤ m}. (23)

We assume that the solution to this problem always exists.

1



In the framework from Section 2 and under Assumption A1, we have V(m, z, t, a) = m −
w(z, a) +maxx{v(x, t) − k ⋅ x}. The following assumption relaxes this property by only re-
quiring that the taste type does not influence the indirect utility from disposable income
and earnings (when goods are consumed efficiently):

Assumption A1’. The indirect utility function is additively separable in allocation (m, z) and
tastes t: V(m, z, t, a) ≡ W(m, z, a) +W0(t, a), for some functionsW andW0.

We note that—much like Assumption A1—Assumption A1’ plays a dual role. On the one
hand, it implies that the taste type does not influence agents’ choices over combinations of
earnings z and disposable income m. This is an ordinal property that ensures that distorting
consumption of goods does not allow the planner to relax incentive constraints in a useful
way. On the other hand, combined with Assumption A2, Assumption A1’ implies that
the planner does not have a motive to redistribute across taste types. This is a cardinal
property of the utility functions. In particular, fixing agents’ ordinal preferences, it may be
possible to select a cardinal representation of these preferences that satisfies Assumption
A1’; however, different cardinal representations generally correspond to different social
preferences under welfare maximization (if welfare weights are fixed). Thus, Assumption
A1’ is also a restriction on social preferences.25 We return to this point later when we exploit
various examples of preferences satisfying Assumption A1’.

In the setup without quasi-linear preferences we need to impose an additional restriction
on the initial mechanism. Define a mechanism (x, z) to be admissible if it is feasible and
satisfies U(x(t, a), z(t, a), t, a) ≥ U(x, z(t, a), t, a) for all (t, a) ∈ Θ. Recall that x is the smallest
possible consumption vector (for instance, it is common to have x = 0). Admissibility is,
hence, a very weak requirement that rules out mechanisms in which the planner spends
resources on ”bads” to make some agents worse off relative to consuming the smallest
possible consumption bundle x.

We can now state the generalization of Theorem 1.

Theorem 1’. Suppose that Assumptions A0, A1’, A2, and A3 hold. Then, for any admissible
mechanism, there exists a feasible mechanism that (weakly) improves the planner’s objective, induces
an efficient allocation of goods, and can be implemented with a competitive goods market and a
(potentially stochastic) income tax.

Proof. Denote the original mechanism by (x0, z0). Suppose that the planner can observe
taste types t. (Later we will show that this relaxation of the problem leads to an improving

25Under Assumption A1, quasi-linearity of preferences corresponds to an ordinal assumption on agents’
preferences, while the normalization of all agents’ marginal utility of disposable income to 1 corresponds to
an assumption on social preferences.

2



mechanism that can still be implemented even when taste is not observed.) Thus, the
planner faces incentive constraints only in ability:

U(v(x(t, a), z(t, a), t), z(t, a), a) ≥ U(v(x(t, a′), z(t, a′), t), z(t, a′), a), ∀t ∈ Θt, a, a′ ∈ Θa. (24)

Under these incentive constraints, goods x are incentive-separable, as defined by Doligal-
ski et al. (2024). By their Lemma 1 and Lemma 2, the planner can provide all agents with
the same utility while saving resources and keeping earnings unchanged by allocating dis-
posable income m(t, a) and allowing agents to purchase goods at their marginal costs (i.e.,
in a competitive goods market). Let m1(t, a) be the disposable income required to achieve
the original utility level:

V(m1(t, a), z0(t, a), t, a) = U(v(x0(t, a), z0(t, a), t), z0(t, a), a), ∀(t, a) ∈ Θ. (25)

Thus, allocating disposable income m1(t, a) and earnings z0(t, a) in conjunction with a com-
petitive goods market feasibly improves (at least in a weak sense) the planner’s objective
relative to the original mechanism (x0, z0). However, the allocation potentially depends on
the taste type t and may be infeasible without the planner knowing the agents’ preferences.

We will now construct a mechanism that delivers the same social objective as (m1, z0)with-
out conditioning on agents’ tastes. The main technical challenge in this step—compared to
the proof of Theorem 1 from the main text—is that without strong duality we cannot rule
out the possibility that the taste type in the relaxed problem is used to implement a de facto
stochastic income tax (which is known to be sometimes better than a deterministic income
tax). The trick is to replicate the randomness provided by conditioning on the taste type
with an explicit random variable with the same distribution.

Given the random variable (t, a) describing the distribution of agents’ types, define a ran-
dom variable (τ, t, a), where τ has the same marginal distribution as t but is independent
of (t, a). With slight abuse of notation, consider a mechanism that conditions allocations
on (τ, a) rather than (t, a): For an agent with “extended” type (τ, t, a), the planner allocates
disposable income m̃1(τ, t, a) = m1(τ, a) and labor earnings z̃0(τ, t, a) = z0(τ, a). Clearly,
(m̃1, z̃0) can be implemented even if the planner does not know agents’ true taste parame-
ters t.

The value of the social objective under (m̃1, z̃0) is

x
λ(t, a)V(m1(τ, a), z0(τ, a), t, a) dFt(τ)dF(t, a). (26)
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Applying Assumptions A1’, A2, and A3 allows us to rewrite it as

x
λ̄(a)W(m1(τ, a), z0(τ, a), a) dFt(τ)dFa(a) +

x
λ̄(a)W0(t, a)dFt(t)dFa(a). (27)

Combining the two integrals and applying Assumptions A1’, A2 and A3 in reverse yields
the value of the social objective:

∫ λ(τ, a)V(m1(τ, a), z0(τ, a), τ, a) dF(τ, a), (28)

showing that (m̃1, z̃0) achieves the same social welfare as the original mechanism (m1, z0).

Next, we show that (m̃1, z̃0) is feasible. The mechanism (m̃1, z̃0) is incentive-compatible if,
for all t, τ ∈ Θt and a, a′ ∈ Θa:

V(m1(τ, a), z0(τ, a), t, a) ≥ V(m1(τ, a′), z0(τ, a′), t, a). (29)

By Assumption A1’, this is equivalent to requiring that

W(m1(τ, a), z0(τ, a), a) ≥ W(m1(τ, a′), z0(τ, a′), a). (30)

Since (m1, z0) is a feasible mechanism in the relaxed problem, we must have

V(m1(τ, a), z0(τ, a), τ, a) ≥ V(m1(τ, a′), z0(τ, a′), τ, a), (31)

implying that—under Assumption A1’—the constraint (29) also holds.

Finally, the resource constraint clearly holds, since (m̃1, z̃0) induces the same distribution
of disposable income and earnings as (m1, z0).

The decentralization with an income tax follows from the taxation principle. Note that the
income tax will depend on the choice of earnings and, potentially, on the auxiliary type τ

(which means that the income tax could be stochastic).

OA.2 When is the improving income tax deterministic?

Theorem 1’ allows for an income tax that is stochastic, meaning that two otherwise identical
agents may be facing a different income tax schedule. This is mostly a technical complica-
tion: A stochastic income tax in the improving mechanism is not needed if strong duality
holds so that the resource constraint can be incorporated into the objective function with a
Lagrange multiplier—in that case, we can apply the proof of Theorem 1’ to the Lagrangian
and “purify” the optimal mechanism. (We note that strong duality is implicitly assumed
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by almost the entire literature on optimal taxation.) Formal conditions under which strong
duality holds are necessarily somewhat restrictive in the current context, as the planner’s
problem must be convex for standard constraint qualifications to apply. For completeness,
we provide sufficient conditions for an existence of the improving mechanism with a deter-
ministic income tax.

Proposition 3. Strengthen Assumption A1’ to: V(m, z, t, a) ≡ w1(m) +w2(z)w3(a) +w4(t, a),
where w1(m) and −w2(z) are concave and w2(z) is strictly monotone. Then, the decentralizing
income tax in Theorem 1’ can be made deterministic.

The essential assumption in Proposition 3 is that ability affects preferences over earnings
multiplicatively. For example, it is satisfied by the common isoelastic disutility function:

w2(z)w3(a) = −
1

1+ σ
(z

a
)

1+σ

, σ ≥ 0. (32)

Proof of Proposition 3. Following the first part of Theorem 1’, we know that the planner
can weakly improve the objective by allocating disposable income m1(t, a) and earnings
z0(t, a), and allowing the agents to purchase goods at the competitive market. This mech-
anism may require the planner to know the taste types. In the second part of Theorem
1’ we removed this requirement by introducing a randomly drawn auxiliary type τ that,
for the purpose of allocating disposable income and earnings, replaced the true taste type.
Now we will follow an alternative strategy and show that, under stronger assumptions,
the planner can remove the dependence of the mechanism on preference type by ”averag-
ing” (in the proper sense) the allocation for each ability level—all the while maintaining
the value of the social objective and feasibility.

Reformulate the planner’s problem such that the choice variables are the utility from dis-
posable income ω1(t, a) = w1(m(t, a)) and the utility from earnings ω2(t, a) = w2(z(t, a)) for
each type (t, a) ∈ Θ. The social objective becomes

∫ λ̄(a) (ω1(t, a) +ω2(t, a)w3(a) +w4(t, a)) dF(t, a), (33)

the incentive constraints are

ω1(t, a) +ω2(t, a)w3(a) ≥ ω1(t, a′) +ω2(t, a′)w(a), ∀t ∈ Θt, a, a′ ∈ Θa, (34)

and the resource constraint is

∫ w−1
1 (ω1(t, a)) −w−1

2 (ω2(t, a)) dF(t, a) +G ≤ 0. (35)
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Note that the objective and the incentive constraints are linear in choice variables, while
the left-hand side of the resource constraint is convex in the choice variables. Thus, the
constraint set of the planner’s problem is convex.

Construct a new mechanism by averaging the utility implied by the mechanism (m1, z0)
across the taste types:

ω̃1(t, a) = ∫ w1(m1(t, a)) dFt(t), ω̃2(t, a) = ∫ w2(z0(t, a)) dFt(t), ∀(t, a) ∈ Θ. (36)

Since the mechanism (m1, z0) is feasible and the constraint set (expressed in terms of utili-
ties) is convex, the new mechanism belongs to the constraint set and is, thus, feasible. Since
the objective is linear in the utilities, the new mechanism delivers the same value of the so-
cial objective as (m1, z0). Finally, the new mechanism does not condition on t and, hence,
is feasible also when the planner does not know taste types.

OA.3 Preferences satisfying Assumption A1’

While Assumption A1’ has the virtue of capturing the required economic properties at a
higher level of generality than Assumption A1, it is more abstract and difficult to inter-
pret.26 In this subsection, we explore the consequences of this assumption and consider a
few examples.

Recall that Assumption A1’ has implications both for agents’ ordinal preferences and for
their cardinal utilities (which matter for the social welfare function). To flesh out the ordi-
nal consequences of Assumption A1’, we will assume that it holds for all price vectors in
a (small) neighborhood of the vector of marginal costs k.27 Assume that V is twice contin-
uously differentiable and denote the undistorted choice of goods by x∗(m, z, t, a). Then it
follows from Roy’s identity that, for any good i ∈ {1, ..., L},

∂x∗i (m, z, t, a)
∂m

= αi(m, z, a) + βi(m, z, a)x∗i (m, z, t, a), (37)

for some functions αi and βi that do not depend on the taste type t.28 Thus, the slope of
26Eden and Freitas (2024) find that a condition analogous to Assumption A1’ is necessary for the utilitar-

ian social welfare function to treat each person’s disposable income equally—a property they call “income
anonymity.”

27Economically, this seems to be without loss of generality because it ensures that a small perturbation of
marginal costs does not alter the conclusion regarding the desirability of distorting goods markets. Formally,
this strengthening of the assumption is needed to use calculus to characterize optimal demand functions.

28By Roy’s identity:

x∗i (m, z, t, a) = −∂V
∂ki
(∂V

∂m
)
−1
= −(∂W(m, z, a)

∂ki
+ ∂W0(t, a)

∂ki
)(∂W(m, z, a)

∂m
)
−1

.
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the Engel curve for any good i, conditional on the consumption level of that good x∗i , is
independent of the preference type t. As a result, the Engel curves of any two taste types—
keeping z and a constant—either never cross, or perfectly overlay.

Although this property is already quite restrictive, it is satisfied by commonly used families
of preferences such as quasi-linear preferences, homothetic (more generally, Stone-Geary)
preferences, as well as ”Almost Ideal Demand Systems” of Deaton and Muellbauer (1980).
Next, we look at these examples one by one, and argue that a particular cardinal repre-
sentation must be used to make Assumption A1’ hold. In this sense, despite being more
permissive than Assumption A1, Assumption A1’ remains a knife-edge condition.

Example 1 (Quasi-linear preferences).

U(x, z, t, a) = x1 + v(x2, ..., xL, t) −w(z, a), (38)

where x ∈ R ×RL−1
+ . The efficient choice of good i ∈ {2, ..., L} depends on the taste type but not on

the disposable income m; denote that choice by x∗i (t). Then, the indirect utility function is

V(m, z, t, a) =
m −∑L

i=2 kix∗i (t)
k1

+ v(x∗2(t), ..., x∗L(t), t) −w(z, a). (39)

This indirect utility function satisfies Assumption A1’. Note, however, that it was important that
we normalized the marginal utility of good x1 to 1; for example, the utility function

U(x, z, t, a) = v1(t) (x1 + v(x2, ..., xL, t) −w(z, a)) ,

represents the same ordinal preferences but violates Assumption A1’. This is because v1(t) effec-
tively acts as a taste-dependent welfare weight which could break the conclusion of Theorem 1’.29

Example 2 (Homothetic preferences30).

U(x, z, t, a) =
L
∑
i=1

γi(t) log(xi) −w(z, a), (40)

where γi(t) ≥ 0, and x ∈ RL
+. Here, the parameter γi(t) is proportional to the optimal expenditure

Differentiate it with respect to m and substitute in the above expression for x∗i to obtain (37).
29This example shows that we could slightly weaken the assumptions of Theorem 1’ (at the cost of com-

plicating the notation) by imposing Assumption A1’ on the product of the welfare weight and the indirect
utility function and relaxing Assumption A2.

30This example easily generalizes to the class of Stone-Geary preferences given by U(x, z, t, a) =
∑L

i=1 γi(t) log(xi − xi) −w(z, a), where xi is the minimal consumption level of good i.
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share of good i. Then, the indirect utility function is

V(m, z, t, a) =
L
∑
i=1

γi(t) ⋅ log(m) +
L
∑
i=1

γi(t) log
⎛
⎝

γi(t)
∑L

j=1 γj(t) ⋅ ki

⎞
⎠
−w(z, a), (41)

and Assumption A1’ holds if and only if∑L
i=1 γi(t) is constant in t (i.e., agents can differ in propor-

tions of income they spend on different goods, but they cannot differ in total utility of income).

Example 3 (Almost Ideal Demand System). Rather then specifying the utility function, Deaton
and Muellbauer (1980) directly posit the following indirect utility from goods:

V(m, z, t, a) =
log(m) − log(P(t))

ΠL
i=1kβi(t)

i

−w(z, a)

where the price index P(t) is defined as

log(P(t)) = α0(t) +
L
∑
i=1

αi(t)ki +
1
2

L
∑
i=1

L
∑
j=1

γkj(t) log(ki) log(k j),

and parameters satisfy, for all t ∈ Θt:

L
∑
i=1

αi(t) = 1,
L
∑
i=1

βi(t) = 0,
L
∑
i=1

γij(t) = 0, ∀j, γij(t) = γji(t), ∀i, j.

Note that this indirect utility function satisfies Assumption A1’ if parameters {βi(t)}L
i=1 are con-

stant in the taste type t. Then, the implied demand follows a log-linear equation in disposable
income:

x∗i (m, t) = m
ki

⎛
⎝

αi(t) +
L
∑
j=1

γij(t) log(k j)
⎞
⎠
+

βim
ki

log( m
P(t)
) . (42)

The two previous examples featured preference with linear Engel curves. This example demonstrates
that Assumption A1’ is more permissive and allows for some specifications with Engel curves that
are nonlinear.

OB Pareto efficiency in the simplified framework

In this appendix, we formally derive properties of Pareto efficient allocations in the sim-
plified framework of Section 4. (An allocation is Pareto efficient if there does not exist an-
other allocation preserving the resource constraint that makes a positive measure of agents
strictly better off without making anyone worse off.) The first lemma pins down the key
condition for an efficient allocation under subsistence constraints.
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Lemma 4. The allocation (za(t), ca(t), xa(t)) is efficient if and only if the resource constraint (9)
holds with equality and, for almost all t,

zh(t) = z̄ and zl(t) = 0,

xa(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 t ≥ k, ca(t) > c

∈ [0, 1] t ≥ k, ca(t) = c

0 otherwise

. (43)

The properties of an efficient allocation in our setting are straightforward given the linear-
utility model. For agents above the subsistence level, the taste type t is equal to their
willingness to pay (WTP) for the good, and efficiency requires that these agents consume
the good if and only if their WTP is above marginal cost. However, for agents whose nu-
meraire consumption is at the subsistence level c, WTP is not uniquely defined. Intuitively,
agents at the subsistence constraint have a rate of substitution t for buying slightly less
of the good, and a rate of substitution 0 for buying slightly more of the good (since this
would shift their numeraire consumption below subsistence). Consequently, for an agent
at the subsistence constraint who has taste type t, any level of consumption of the good
consistent with WTP being between 0 and t is Pareto efficient.

Next, we formalize the intuitive result that a Pareto efficient allocation of goods requires
pricing them at their marginal costs.

Definition 1. For an incentive-compatible mechanism (za(t), xa(t), ca(t)), we define the per-unit
price for a good with (strictly positive) quality q ∈ Im(xa) faced by ability type a as

pa(q) ∶=
ca(0) − ca(x−1

a (q))
q

. (44)

Lemma 5. If an incentive-compatible mechanism (za(t), xa(t), ca(t)) is efficient, then for any
a ∈ {l, h} and any strictly positive q ∈ Im(xa), we must have pa(q) = k.

OB.1 Proofs of Lemma 4 and Lemma 5

Proof of Lemma 4. It is immediate that labor supply must satisfy zh(t) = z̄ and zl(t) = 0
in any efficient allocation. Since we restricted attention to allocations in which agents’
utilities are finite, we can assume that ca(t) ≥ c for all a and t. It is also clear that the
resource constraint (9) must be binding in any efficient allocation.

We will first prove that condition (43) is necessary. Suppose condition (43) fails for a posi-
tive mass of agents such that ca(t) > c and t ≥ k. Find ϵ > 0 such that a strictly positive mass
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of agents have ca(t) ≥ c + ϵk and xa(t) ≤ 1− ϵ; then, decrease their ca(t) by ϵk, and increase
their xa(t) by ϵ. This leaves the resource constraint unaffected and raises the utility of these
agents (almost all of them strictly), which contradicts Pareto efficiency. Condition (43) does
not restrict xa(t) for agents with ca(t) = c. Finally, suppose that condition (43) fails for a
positive mass of agents such that ca(t) = c and t < k. Then, an analogous argument as for
the first case shows that the utility of a positive mass of such agents can be improved.

We will now prove that condition (43) is sufficient. Fix an allocation satisfying condition
(43) and suppose that there is a Pareto improvement. Notice that there cannot be a Pareto
improvement for agents for whom ca(t) > c unless these agents consume more resources
in total (understood as a decrease in the left-hand side of constraint (9)). Hence, if there
is a Pareto improvement, there is also a Pareto improvement in which only agents with
ca(t) = c are affected. Similarly, the utility of agents with ca(t) = c and t < k can only be
increased by giving them more resources, so we can find a Pareto improvement among
agents with ca(t) = c and t ≥ k. Fix such a Pareto improvement, and denote the set of
affected agent types by A. Let ∆ca(t) ≥ 0, ∆xa(t) denote the change in their allocation of
c and x in the Pareto improvement. It must be that ∆ca(t) + t∆xa(t) ≥ 0 for all (t, a) ∈ A,
with a strict inequality for a positive mass of agents within A. To preserve the resource
constraint, it must be that, E[∆ca(t) + k∆xa(t)∣A] ≤ 0, where the expectation is taken over
(a, t) conditional on A. We have

0 ≥ E[∆ca(t) + k∆xa(t)∣A] ≥ E[∆ca(t) + t min{∆xa(t), 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

∣A] > 0,

where the last inequality is strict because ∆ca(t) + t∆xa(t) > 0 for a positive mass of agents
in the set A. Contradiction.

Proof of Lemma 5. First, suppose that ca(t̄) > c (which implies that, in an incentive-
compatible mechanism, ca(t) > c for all t). Then, Pareto efficiency requires that xa(t) =
1{t≥k}. Fixing a, incentive compatibility implies that ca(t) jumps downward at t = k by k,
and is constant otherwise. In particular, only quality q = 1 is offered. Plugging this into the
definition of the per-unit price, we obtain that pa(1) = k, as required.

Next, let us assume that ca(t̄) = c. By incentive-compatibility, there must exist a type t⋆

such that, for t ∈ [t⋆, t̄], ca(t) = c, while for types t < t⋆, ca(t) > c. For types t < t⋆, Pareto
efficiency requires that xa(t) = 1{t≥k}. For types t ≥ t⋆, incentive compatibility requires
that xa(t) = xa(t̄), while Pareto efficiency requires that t⋆ ≥ k. However, if t⋆ > k, then the
resulting xa(t)would not be monotone on [0, t̄], which contradicts incentive-compatibility.

10



We conclude that xa(t) = xa(t̄)1{t≥k}. The rest of the proof is analogous to the previous case.

OC Results under curvature in the utility function

In this appendix, we examine the robustness of findings from the model with subsistence
constraints (Theorem 2) to a utility function that is smooth and strictly concave in the nu-
meraire. We also allow for a strictly concave utility from good x and a strictly convex
disutility from working. Specifically, assume the utility of type (t, a) is given by

u(c) + v(x, t) − (1a=hw(z) + 1a=lw̄z) (45)

that is twice continuously differentiable in all arguments and where: u(c) is strictly in-
creasing, strictly concave, and either c ∈ R or c ≥ 0 and limc→0 u′(c) = ∞; v(x, t) is concave
in x ∈ R+ and satisfies the single-crossing property: vxt(x, t) > 0 for all t ∈ [0, t̄] and x ≥ 0;
w(z) is strictly increasing and strictly convex in z ∈ R+ and w̄ is high enough that low-
ability types neither work nor prefer to mimic high-ability types in the optimum. The rest
of the model is the same as in Section 4.3.

OC.1 Preliminary results

No earnings distortion. Define the efficient choice of earnings of high-ability agents given
numeraire c as z∗(c) ∶= w′−1(u′(c)). Suppose there exists type (t, h)with distorted earnings:
zh(t) ≠ z∗(ch(t)). Perturb zh(t) towards z∗(ch(t)) and adjust ch(t) to keep the utility of this
type constant. The perturbation improves the planner’s objective: It relaxes the resource
constraint and preserves all incentive constraints, since high-ability types can be mimicked
only by other high-ability agents, who are indifferent to this alteration. Thus, earnings of
high-ability types are undistorted at the optimum.

Given this result, it will be convenient to define the utility from numeraire net of disutility
from working as

ũ(c) ∶= u(c) −w(z∗(c)).

Summarizing incentive constraints. Take some t, t′ ∈ Θt and assume that the IC of type
(t, h)mimicking (t, l) and of (t, l)mimicking (t′, l) are satisfied. Then

u(ch(t)) + v(xh(t), t) −w(zh(t)) ≥ u(cl(t)) + v(xl(t), t) ≥ u(cl(t′)) + v(xl(t′), t). (46)
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Comparing the left-hand and the right-hand sides, we see that type (t, h) has no incentives
to mimic (t′, l). Thus, provided that other ICs are satisfied, the ICs corresponding to joint
deviations in ability and taste are redundant.

Denote the utility level of type (t, a) by Ua(t) = u(ca(t)) + v(xa(t), t) − 1a=hw(zh(t)). The
downward ICs in ability can be written as:

Uh(t) ≥ Ul(t),∀t ∈ Θt. (47)

Regarding the ICs in taste dimension, given the single-crossing assumption, it is standard
to summarize them as

Ua(t) = Ua(0) +∫
t

0
vt(xa(t), t) dt, ∀t ∈ Θt, a ∈ {h, l}, (48)

combined with a requirement that xl(⋅) and xh(⋅) are non-decreasing. Note that U′a(t) =
vt(xa(t), t), whenever it exists.

Note that ICs (in taste) imply that cl(t) must be non-increasing, and strictly decreasing
whenever xl(t) is strictly increasing. The same is true for high-ability agents. To see that,
suppose that xh(t′) ≥ xh(t) and ch(t′) > ch(t) for some t′ > t. Since earnings are undistorted,
zh(t′) ≤ zh(t). Thus, type (t, h) strictly gains from mimicking (t′, h)—a contradiction.

Reformulating the resource constraint. Let ua(t) represent the utility from numeraire net
of the cost of working of type (t, a). The resource constraint can be written as a function of
{ua(⋅), xa(⋅)}a∈{h,l}:

∫ (µh(z∗(ũ−1(uh(t))) − ũ−1(uh(t)) − kxh(t)) − µl(u−1(ul(t)) + kxl(t))) dF(t) ≥ G. (49)

Furthermore, ua(t) is pinned down by Ua(0) and xa(⋅):

ua(t) ∶= Ua(t) − vt(xa(t), t) = Ua(0) +∫
t

0
vt(xa(τ), τ) dτ − vt(xa(t), t). (50)

Thus, we effectively expressed the resource constraint as a function of {Ua(0), xa(⋅)}a∈{h,l}.

Reformulating the objective. Incorporate the downward incentive constraints in ability
(47) into the objective function by forming a Lagrangian:

L = λhµh ∫ Uh(t) dF(t) + λlµl ∫ Ul(t) dF(t) +∫ (Uh(t) −Ul(t)) dΓ(t), (51)
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where Γ(t) stands for the value of marginally relaxing the downward incentive constraints
(in ability) for all types in the interval [0, t]—see Jullien (2000) for an analogous formulation
in the model with type-dependent outside options. We assume that Γ(t) corresponding to
the optimal mechanism exists.31 Note that Γ(t) is non-negative and non-decreasing, equal
to zero for t < 0 and constant for t ≥ t̄. The multiplier Γ(t) can be discontinuous. For
instance, Γ(t̄) = Γ(0) > 0 means that the IC in ability binds only for the lowest taste type
t = 0, while Γ(t̄) > 0 and Γ(t) = 0,∀t < t̄, means that this constraint binds only for the highest
taste type t = t̄. An intermediate case, with Γ(t) increasing over the interval of types, is also
possible.

Integrate the objective by parts, starting with high-ability agents:

∫ λhµhUh(t) dF(t) +∫ Uh(t) dΓ(t) = (λhµh + Γ(t̄))Uh(t̄) −∫ (λhµhF(t) + Γ(t))U′h(t) dt

= (λhµh + Γ(t̄))Uh(0) +∫ (λhµh(1− F(t)) + Γ(t̄) − Γ(t))vt(xh(t), t) dt,

and similarly for the low-ability agents:

∫ λlµlUl(t) dF(t) −∫ Ul(t) dΓ(t) = (λlµl − Γ(t̄))Ul(t̄) −∫ (λlµl F(t) − Γ(t))U′l(t) dt

= (λlµl − Γ(t̄))Ul(0) +∫ (λlµl(1− F(t)) + Γ(t) − Γ(t̄))vt(xl(t), t) dt,

where we used U′a(t) = vt(xa(t), t), implied by the local ICs in taste.

Planner’s problem. We can write the planner’s problem as

max
{Ua(0),xa(⋅)}a∈{h,l}

(λhµh + Γ(t̄))Uh(0) +∫ (λhµh(1− F(t)) + Γ(t̄) − Γ(t))vt(xh(t), t) dt

+ (λlµl − Γ(t̄))Ul(0) +∫ (λlµl(1− F(t)) + Γ(t) − Γ(t̄))vt(xl(t), t) dt (52)

subject to the resource constraint (49) and the monotonicity constraints that require xh(⋅)
and xl(⋅) to be non-decreasing. We define the relaxed problem as the planner’s problem
with the monotonicity constraints dropped.

31Sufficient conditions for the existence of Γ(t) are the convexity of the planner’s problem and the gener-
alized Slater condition (based on Theorem 3.4 in Bonnans and Shapiro (2000)). Since our problem does not
include individual rationality constraints, the generalized Slater condition is always satisfied. The convexity
of the planner’s problem can be proven when the taste type affects the utility from good x multiplicatively—
see Proposition 3 in the Online Appendix OA for an analogous result.
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FOCs of the relaxed problem. It will be convenient to define ga(t) ∶= 1/u′(ca(t)). Note
that ga(t) is a strictly increasing transformation of ca(t). Thus, ga(t) is non-increasing in t,
and strictly decreasing when xa(t) is strictly increasing.

ga(t) represents a resource benefit of marginally lowering the utility from numeraire (net
of labor cost) of an agent with type (t, a). For the low-ability agents, this can be verified by
differentiating the resource constraint (49) with respect to ul(t). For the high-ability types,
the resource impact of perturbing uh(t) is given by:

d[z∗(ũ−1(uh(t))) − ũ−1(uh(t))]
duh(t)

= dz∗(c(t))
dc(t)

1
ũ′(c(t))

− 1
ũ′(c(t))

. (53)

Furthermore, ũ′(c(t)) = u′(c(t)) −w′(z∗(c(t))dz∗(c)
dc . If earnings are on the boundary and

dz∗(c)
dc = 0, then it follows that the resource impact is gh(t). Otherwise, given that earnings

are undistorted, we have u′(c) = w′(z∗(c)), which implies dz∗(c)
dc = u′′(c)

w′′(z∗(c)) . Plugging these
in, we obtain

d[z∗(ũ−1(uh(t))) − ũ−1(uh(t))]
duh(t)

= − 1
u′(ch(t))

= −gh(t). (54)

Intuitively, since earnings are undistorted, the planner is indifferent between adjusting
ch(t) or zh(t) to achieve a given change of uh(t).

The first-order conditions of the relaxed problem with respect to Uh(0) and Ul(0) are:

λhµh + Γ(t̄) − αµh ∫ gh(t)dF(t) = 0, (55)

λlµl − Γ(t̄) − αµl ∫ gl(t)dF(t) = 0. (56)

Summed, they pin down the multiplier on the resource constraint α:

1
α
= Ea,t [ga(t)] =∶ ḡ. (57)

We can also rewrite these first-order conditions as

Γ(t̄) = µh ∫ (
gh(t)

ḡ
− λh) dF(t) = −µl ∫ (

gl(t)
ḡ
− λl) dF(t). (58)

The first-order conditions with respect to xa(t), a ∈ {h, l}, accounting for the potential corner
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solution at xa(t) = 0, require

(λhµh(1− F(t)) + Γ(t̄) − Γ(t))vtx(xh(t), t)

+ α [(vx(xh(t), t)
u′(ch(t))

− k)µh f (t) − vtx(xh(t), t)µh ∫
t̄

t
gh(t′)dF(t′)] ≤ 0, (59)

and

(λlµl(1− F(t)) + Γ(t) − Γ(t̄))vtx(xl(t), t)

+ α [(vx(xl(t), t)
u′(cl(t))

− k)µl f (t) − vtx(xl(t), t)µl ∫
t̄

t
gl(t′)dF(t′)] ≤ 0. (60)

Define the good x wedge as τa(t) ∶= vx(xa(t),t)
u′(ca(t)) − k. A positive (respectively, negative) value

of the wedge implies that allocation x is distorted downwards (resp., distorted upwards,
provided that xa(t) > 0). We can express the FOCs as

τh(t)
µh f (t)

vtx(xh(t), t)
1
ḡ
≤ µh ∫

t̄

t
(

gh(t′)
ḡ
− λh) dF(t′) − Γ(t̄) + Γ(t), (61)

τl(t)
µl f (t)

vtx(xl(t), t)
1
ḡ
≤ µl ∫

t̄

t
(

gl(t′)
ḡ
− λl) dF(t′) + Γ(t̄) − Γ(t). (62)

Sum them up and multiply by ḡ to get

τh(t)
µh f (t)

vtx(xh(t), t)
+ τl(t)

µl f (t)
vtx(xl(t), t)

≤ (1− F(t))Ea,t′ [ga(t′) − ḡ ∣ t′ ≥ t] . (63)

Since ga(t) is non-increasing with taste, the right-hand side is (weakly) negative. Thus,
either τh(t) or τl(t)must be (weakly) negative for any t ∈ Θt.

OC.2 Optimal goods distortions

The following proposition characterizes the optimal goods market distortions with curva-
ture in the utility function. To rule out an uninteresting case, we assume that in the opti-
mum a positive measure of agents receives x > 0. We discuss this proposition and provide
intuition in the main body of the paper (Section 4.3).

Proposition 4. Suppose that Assumptions A2 and A3 hold, and that agents’ preferences are given
by formula (45). The optimal mechanism has the following properties:

1. Distortions to good x are optimal: There can be no interval of taste types [i1, i2] ⊆ [0, t̄]where,
for all t ∈ [i1, i2], max{xh(t), xl(t)} > 0 and both xh(t) and xl(t) are undistorted.
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2. Assume that the optimum does not require ironing.32 The optimal allocation of good x of the
low-ability types is either distorted upwards or undistorted.

3. Assume λh = 0 and that at the optimum xh(t) > xl(t) for all t ≥ t0. The optimal allocation
of good x of the high-ability types with taste t ∈ (t0, t̄] coincides with the solution to the one-
dimensional monopolistic screening problem (with the reservation value given by the utility
of type (t0, h) and the lower bound on feasible allocations of x given by xh(t0)).

Proof. Part 1. Consider an optimal allocation rule. Suppose there exist i1, i2 ∈ Θt, i2 > i1,
such that for all t ∈ [i1, i2] both xh(t) and xl(t) are undistorted and at least one of them is
strictly positive.

We will start by showing that when xa(t) is undistorted and strictly positive over the taste
interval [i1, i2] then xa(t) is strictly increasing and ca(t) strictly decreasing in t over this
interval, for all a ∈ {h, l}. This is useful since it means that the monotonicity constraints are
slack for any t ∈ (i1, i2) and the FOC from the relaxed problem must hold at the optimum.
Suppose that xa(t1) = xa(t2) = x̄ > 0 for some i1 ≤ t1 < t2 ≤ i2. Since markets are not distorted

ku′(ca(t2)) − ku′(ca(t1)) = vx(x̄, t2) − vx(x̄, t1) = ∫
t2

t1
vxt(x̄, t)dt > 0, (64)

which means that ca(t2) < ca(t1). However, then type (t2, a) would mimic (t1, a), which is
a contradiction. Furthermore, if xa(t2) > xa(t1) then ca(t2) < ca(t1), since otherwise type
(t1, a)would mimic (t2, a).

Suppose that low-ability types with taste above threshold tl, where tl < i2, consume good
x in a positive quality. Define t̃ ∶= max{i1, tl}. Then the high-ability types with taste from
[t̃, i2] must also consume x in a positive quality, which follows from their allocation of x
being undistorted. Since both xh(t) and xl(t) are strictly increasing over [t̃, i2], the mono-
tonicity constraints are slack for all t ∈ (t̃, i2) and the FOCs from the relaxed problem inform
us of the welfare impact of a small perturbation within this open interval. Consider (63).
Since ga(t) is a monotone transformation of ca(t), it is strictly increasing over [t̃, i2], and the
right-hand side of (63) is strictly negative for any t ∈ (t̃, i2). On the other hand, the left-hand
side is equal to zero, since good x is undistorted. The FOC is violated and the planner can
improve the allocation by perturbing both xl(t) and xh(t) upward for all t ∈ (t̃, i2).

Next suppose that within the taste interval [i1, i2] none of the low-ability types and all of
the high-ability types consume a positive quality of x. Recall that that Ua(t) = vt(xa(t), t),
for all a ∈ {h, l}, where the right-hand side is increasing in xa(t). Since Uh(i1) ≥ Ul(i1) and

32That is, we can drop the monotonicity constraints on xl(t) and xh(t)without affecting the solution.
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xh(t) > 0 = xl(t) for all t ≥ i1, it follows that U′h(t) > U′l(t) and Uh(t) > Ul(t) for all t > i1.
Thus, Γ(t) = Γ(i1) for all t ∈ (i1, i2). The FOC for xh(t) becomes

τh(t)
µh f (t)

vtx(xh(t), t)
1
ḡ
= µh ∫

1

t
(

gh(t′)
ḡ
− λh) dF(t′) − Γ(t̄) + Γ(i1). (65)

The derivative of the right-hand side with respect to t is proportional to λh −
gh(t)

ḡ . Given
that gh(t) is strictly decreasing over the interval (i1, i2), the right-hand side can be either
strictly decreasing, or strictly increasing, or first strictly decreasing and then strictly in-
creasing. Either way, there are at most two values of t for which the right-hand side is
zero. Thus, for almost all t ∈ (i1, i2) the first-order condition is violated and the planner can
improve the allocation by distorting xh(t).

Part 2. Consider the relaxed problem. Define

ϕ(t) ∶= µl ∫
t

0
(λl −

gl(t)
ḡ
) dF(t) − Γ(t). (66)

Combining FOCs with respect to xl(t) and Ul(0) yields

ϕ(t) ≥ τl(t)
µl f (t)

vtx(xl(t), t)
1
ḡ

. (67)

Let’s characterize the behavior of ϕ(t). From the FOC with respect to Ul(0)we know that

µl ∫
t̄

0
(λl −

gl(t)
ḡ
) dF(t) = Γ(t̄) ≥ 0. (68)

Since gl(t) is non-increasing, there exists a threshold t̃ ≥ 0 such that λl ≥
gl(t)

ḡ for all t ≥ t̃.
It follows that the first term of ϕ(t) is continuous in t, equal to 0 at t = 0, and (weakly)
decreasing until t̃, at which point it becomes (weakly) increasing, eventually reaching Γ(t̄).
The second term, −Γ(t), is right-continuous (which follows from the definition of Γ(t))
and (weakly) decreasing in t, eventually reaching −Γ(t̄). Thus, ϕ(0) ≤ 0 and ϕ(t̄) = 0. In
addition, ϕ(t) can be strictly positive only when t > t̃, i.e., in the region where the first term
is increasing.

Now, suppose there exists t0 ∈ Θt for which τl(t0) > 0, which would contradict the propo-
sition. That requires ϕ(t0) > 0. Since ϕ(⋅) is right-continuous and it eventually reaches the
value ϕ(t̄) = 0, there must exist t1 > t0 such that ϕ(t) > 0 for all t ∈ (t0, t1) and ϕ(t−1) > ϕ(t)
for all t > t1. Since ϕ(⋅) is strictly decreasing at t1, Γ(⋅) is strictly increasing at this point,
implying Uh(t1) = Ul(t1).
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Given that Uh(t0) ≥ Ul(t0), it follows that

Uh(t1) −Uh(t0) ≤ Ul(t1) −Ul(t0), (69)

which can be restated as

∫
t1

t0
U′h(s)ds ≤ ∫

t1

t0
U′l(s)ds. (70)

Thus, there must exists t′ ∈ (t0, t1) such that U′h(t
′) < U′l(t

′) or, equivalently, xh(t′) ≤ xl(t′).

If xl(t′) > 0, then the FOC with respect to xl(t′) holds as an equality and τl(t′) > 0. Since
xh(t′) ≤ xl(t′) and ch(t′) > cl(t′)—which must hold, as otherwise type (t, h) would mimic
(t, l)—it follows that τh(t′) > 0. That contradicts (63), which requires that either τh(t′) or
τl(t′) is non-positive.

If xl(t′) = xh(t′) = 0, then, by monotonicity, xl(t0) = xh(t0) = 0. Similarly as in the previous
case, τl(t0) > 0 and xh(t0) ≤ xl(t0) implies that τh(t0) > 0, which contradicts (63).

Part 3. We will consider the planner’s subproblem of choosing the allocation of high-ability
types with taste t > t0 taking as given the rest of the allocation rule. We will show that it
can be written as a one-dimensional monopolistic screening problem.

By assumption, the welfare weight is 0 for the high-ability types. Furthermore, the marginal
value of public funds is always positive. Thus, the planner’s objective with respect to the
high-ability types is to maximize revenue.

We will show that the downward ICs in ability are slack for t > t0. Note that the ICs in taste
require that U′a(t) = vt(xa(t), t), with the right-hand side strictly increasing in xa(t). Thus,
given that the optimal allocation involves Uh(t0) ≥ Ul(t0) and xh(t) > xl(t) for all t ≥ t0, it
follows that U′h(t) > U′l(t) and Uh(t) > Ul(t) for all t > t0.

Define ph(t) ∶= z∗(ch(t)) − ch(t) as a transfer from type (t, h) to the planner. Let P(c) ∶=
z∗(c) − c, which is strictly decreasing, and define the disutility from transfer as d(p) ∶=
−ũ(P−1(p)). It follows that the utility of type (t, h) from allocation (c, x, z) where z = z∗(c)
can be described as v(x, t) − d(p)where p = z − c.

Now, we can write the planner’s subproblem over {xh(t), ph(t)}t∈(t0,t̄], taking the allocation
of remaining high-ability types as given, as:

max
{xh(t),ph(t)}t∈(t0,t̄]

∫
t̄

t0
(ph(t) − kxh(t)) dF(t) (71)
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subject to incentive-compatibility constraints

v(xh(t), t) − d(ph(t)) ≥ v(xh(t′), t) − d(ph(t′)), ∀t, t′ ∈ [0, t̄]. (72)

The single-crossing condition implies that the local incentive constraints are sufficient and
we only need to keep track of incentives to deviate to within the set [t0, t̄]. We can summa-
rize these incentive constraints as

Uh(t) = Uh(t0) +∫
t

t0
vt(xh(t), t), ∀t ∈ (t0, t̄], (73)

together with the requirement that xh(t) is non-decreasing over [t0, t̄]. Note that Uh(t0)
and xh(t0), which are taken as given, play the roles of the reservation value and the lower
bound on the feasible allocation of x, respectively. Thus, we can rewrite the problem as

max
{xh(t),ph(t)}t∈(t0,t̄]

∫
t̄

t0
(ph(t) − kxh(t)) dF(t) (74)

subject to (73), xh(⋅) being non-decreasing and xh(t) ≥ xh(t0),∀t ∈ (t0, t̄], which concludes
the proof.
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