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Abstract

When does paying a strictly positive compensation in every state of the world improve

incentives to exert effort? I show that in the typical model of moral hazard it happens only

when the effort is a strict complement to consumption. If the cost of effort is monetary, a

positive minimal compensation strengthens incentives only when the agent is prudent and

always does so when the marginal utility of consumption is unbounded at zero consumption. I

suggest applications of these results in the personal income taxation.

1 Introduction

The model of moral hazard demonstrates the trade-off between insurance and incentives. A risk

neutral principal wants to motivate a risk averse agent to exert effort. Moreover, the principal

needs to provide the agent with some minimal level of utility, e.g. due to the agent’s participation

decision. The trade-off exists, since the efficient provision of utility requires the full insurance of

the agent, which undermines any incentives for effort. In this paper I show that this trade-off is not

absolute: sometimes increasing insurance benefits incentives. I identify cases in which the optimal

compensation of the agent includes a positive unconditional pay, even though the principal is not

obliged to provide the agent with any minimal level of utility. Thus, the unconditional pay plays a

role of the incentive pay, as it strengthens the agent’s willingness to exert effort.

In my framework the agent chooses whether to exert effort or not, which affects the distribution of

output. The principal, who observes only the realized output, sets up a compensation scheme to

motivate the agent to exert effort at the lowest cost. The principal is constrained only by incentive

compatibility - the agent needs to be better off by exerting effort. I impose no participation or

individual rationality constraints. The sole role of the compensation scheme is to provide incentives

for effort.

I study when the optimal compensation scheme includes a positive minimal compensation regardless

of the realized output.1 First, a positive minimal pay is optimal only if effort is a complement to

consumption. Only then higher consumption reduces the cost of effort and relaxes the incentive

1Hölmstrom (1979) shows that the optimal compensation should vary with any observable variable that is infor-
mative of the agents’ level of effort. The unconditional pay does not violate this informativeness principle as long as
there is a state-contingent bonus on top of it.
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compatibility constraint. Consecutively, I focus on the classical case of complementarity between

consumption and effort - the model with a monetary cost of effort. When the output distribution is

sufficiently rich,2 the agent will be compensated in every state of the world only if he is prudent, i.e.

only when the marginal utility of consumption is convex. Without prudence, paying the agent in all

the states that are more likely without effort undermines incentives. Finally, a sufficient condition

for a positive minimal pay for an arbitrary distribution of output is an unbounded marginal utility of

consumption at 0. This simple condition means that marginally increasing the agent compensation

above zero always raises the expected utility from exerting effort more strongly than the expected

utility from shirking.

Grossman and Hart (1983) study various features of the optimal compensation scheme in the moral

hazard problem, such as monotonicity and concavity with respect to output realization. My paper

is concerned with the particular feature: the minimal compensation level. Mirrlees (1999) provide

conditions under which the first-best outcome to be approximated with a step function with two

compensation level. As the lower compensation level converges to zero, the agent’s increased effort

makes realization of the low pay unlikely. I characterize the polar case, in which the minimal

payment to the agent is optimally bounded away from zero. Holmstrom and Milgrom (1991)

propose another environment, based on multitasking, in which insurance is good for incentives.

Compensation which depends on observed outcomes makes the agent shift the effort away from

tasks with unobserved outcomes. As a result, the optimal contract may specify a fix wage which

does not depend on the observed outcomes. In my paper, I show that a certain amount of insurance

can improve incentives in the standard model with a single task.

I discuss the application of my results in the design of the optimal tax systems. Effort can be

interpreted either as an investment in a risky venture or a costly education decision which affects

future distribution of income. When the marginal utility of consumption is unbounded at zero,

taxing the high income agents and providing positive transfer to the low income agents actually

improves incentives for effort. The minimal compensation can be understood as a basic income - an

unconditional cash transfer to any agent. Van Parijs (1991) justifies the basic income on the moral

grounds. I provide conditions under which the basic income has a positive impact on incentives

and can be justified on the efficiency grounds.

Structure of the paper. The next section introduces the framework. Section 3 presents the main

theoretical results. They are illustrated by the numerical exercise in Section 4. The consecutive

section proposes the application of the theory in taxation. The last section concludes and discusses

possible extensions.

2 Model

The agent chooses whether to exert effort (e = 1) or not (e = 0).3 The effort affects the distribution

of output, which has a finite support Y ⊂ R+ and the probability mass function pe : Y → [0, 1].

2There are at least two output levels which are more likely without effort.
3I focus on the binary effort decision, which simplifies the analysis as I need to consider only one incentive-

compatibility constraint. I discuss the extension to the case of continuous effort in the last section.
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The agent’s flow utility function U(c, e) : R+ × {0, 1} → R is increasing, strictly concave and twice

differentiable in consumption c. The effort is costly: U(c, 0)−U(c, 1) > 0 for all c > 0, and I assume

that this difference is strictly positive in the limit as c→ 0.4

The principal does not observe the effort and compensates the agent with payments w : Y → R+

which depend only on the realized output. The optimal compensation scheme solves

max
w:Y→R+

∑
y∈Y

p1(y)(y − w(y))

subject to the incentive compatibility constraint, guaranteeing that the agent is better off by exert

effort ∑
y∈Y

p1(y)U(w(y), 1) ≥
∑
y∈Y

p0(y)U(w(y), 0). (IC)

Note that the agent does not make a participation decision, nor is the principal commited to

provide the agent with any minimal level of utility. The only role of the compensation scheme w is

to provide agent with incentives for effort. I assume that there exists a compensation scheme which

implements a positive effort.5 Under this assumption, the principal always prefers to motivate effort

if the difference in expected output with and without effort is sufficiently high. I assume that this

is the case.

3 When is the minimal compensation strictly positive?

The three propositions below characterize conditions under which a positive minimal compensation

is optimal.

Proposition 1. The minimal compensation is zero if (i) there exists an outcome realization that

is possible only when effort is absent or (ii) effort is a substitute to consumption: ∀c>0Uc(c, 0) ≥
Uc(c, 1).

Proof. It is optimal to pay the agent only if it relaxes the incentive compatibility constraint. Suppose

that there is ȳ ∈ Y which is possible only without effort: p1(ȳ) = 0 and p0(ȳ) > 0. Increasing w(ȳ)

always tightens (IC), so optimally w(ȳ) = 0.

Denote the marginal utility from consumption by Uc(c, e). The optimal contract involves positive

compensation w(y) > 0 for some output y ∈ Y only if

Uc(w(y), 1)− p0(y)

p1(y)
Uc(w(y), 0) =

1

µ
(1)

4Otherwise, the agent that receives no compensation at all is indifferent between the two levels of effort and the
optimal compensation is trivially equal to 0.

5This assumption may be wrong if the effort cost is sufficiently high. Suppose that Y = {y, y}, p1(y) = p, p1(y) =

1−p, p0(y) = 0, p0(y) = 1. With the utility function U(c, e) = −e−γ(c+(1−e)ε) the incentive compatibility constraint
(IC) can be satisfied only if γε < − log(1− p).
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where µ > 0 is the Lagrange multiplier of the incentive constraint. On the other hand, w(y) = 0

can be optimal only if

Uc(0, 1)− p0(y)

p1(y)
Uc(0, 0) ≤ 1

µ
. (2)

If ∀c>0Uc(c, 0) ≥ Uc(c, 1) then the left-hand side of (1) is negative for any output realization that

is more likely without effort. Hence, if p0(y) > p1(y), which is true for at least one y ∈ Y , then

optimally w(y) = 0.

The agent should not be compensated for output which unambiguously identifies the missing effort.

This result is closely related to the ‘unpleasant theorem’ of Mirrlees (1999), according to which

the principal can motivate the agent by introducing severe punishments for output levels that are

unlikely under the positive effort. Furthermore, the principal will not use the positive minimal pay

when consumption is a substitute to effort. When consumption and effort are substitutes, the utility

cost of effort U(c, 0) − U(c, 1) weakly increases with consumption. In order to keep the expected

cost of effort low, the principal will pay the agent only for output levels which coincide with the

positive effort. Specifically, with the commonly assumed additively separable disutility of effort the

optimal contract always involve zero minimal pay.

Proposition 1 shows that the complementarity between consumption and effort is required for the

positive minimal pay. In the remaining part of the paper I derive a sharper characterization of the

minimal pay under the classical case of such complementarity - a situation in which the effort has

a purely monetary cost.

Assumption 1. The utility function is U(c, e) = u(c + (1 − e)ε), where u ∈ C3 is increasing and

strictly concave and ε > 0. Moreover, no output realization unambiguously identifies the missing

effort: p0(y) > 0 =⇒ p1(y) > 0.

Under Assumption 1 the effort has a fixed monetary cost ε > 0. Hence, by shirking and not

incurring the cost, the agent can increase his consumption.

Proposition 2. Under Assumption 1, the minimal compensation is zero if any of the following

conditions hold:

1. The utility function satisfies u′′′(c) ≤ 0 for all c > 0 and there are at least two output levels

that are more or equally likely without effort.

2. The utility function u has a constant absolute risk aversion.

Proof. [1.] First I will derive an additional necessary optimality condition. Take two output real-

izations y, y′ ∈ Y such that both w(y) and w(y′) satisfy (1) and at least one of them is positive.

Perturb w(y) by a small δ and w(y′) by − p1(y)
p1(y′)δ. This perturbation does not affect the princi-

pal’s profit if the effort is unchanged. Define Vỹ(w) ≡ u(w) − p0(ỹ)
p1(ỹ)u(w + ε). The impact of the

perturbation on (IC), taking into consideration the terms up to the second order, is

δ

(
p1(y)V ′y(w(y))− p1(y)

p1(y′)
p1(y′)V ′y′(w(y′))

)
+
δ2

2

(
p1(y)V ′′y (w(y)) +

(
p1(y)

p1(y′)

)2

p1(y′)V ′′y′(w(y′))

)
.
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Optimality requires that this expression is non-positive, since otherwise it would be possible to

relax the incentive-compatibility constraint without losses in profits. The first-order component is

zero by the necessary condition (1). Hence, the optimal contract satisfies

p1(y′)V ′′y (w(y)) + p1(y)V ′′y′(w(y′)) ≤ 0. (3)

Now, take any ȳ ∈ Y such that p0(ȳ)
p1(ȳ) ≥ 1. When u′′′ ≤ 0, we have 1 ≥ u′′(w(ȳ))

u′′(w(ȳ)+ε) , which together

implies that V ′′ȳ (w(ȳ)) ≥ 0. If there are two such output levels, then they violate the necessary

optimality condition (3) unless compensation in both states is 0 or (1) holds for at most one of

them. Either way, for at least one of these output levels the compensation is optimally 0.

[2.] Suppose that the utility is CARA (u(c) ≡ −e−γc) and that the incentive constraint holds as

equality for some compensation scheme w with a positive minimal pay w. Note that∑
y∈Y

p1(y)e−γw(y) =
∑
y∈Y

p0(y)e−γ(w(y)+ε) =⇒
∑
y∈Y

p1(y)e−γ(w(y)−w) =
∑
y∈Y

p0(y)e−γ(w(y)−w+ε),

so the principal can save resources by uniformly reducing the compensation in every contingency.

When the output distribution is sufficiently rich - there are at least two output levels that are less

likely with the positive effort - prudence (u′′′ > 0) becomes the necessary condition for the positive

minimal pay. Without prudence, any contract that satisfies (1) at each output level violates the

second order condition for the local maximum. The principal’s problem is convex in compensation

for the output levels which are less likely under effort. Then it is optimal to keep the compensation

positive for at most one of these output levels. Rothschild and Stiglitz (1971) show that prudent

individuals save more when faced with more risk. The effort decision resembles the savings deci-

sion, as effort, besides changing the distribution of output, reduces the agents consumption by a

constant amount in each contingency. Prudent agents, when faced with less income risk because of

the higher minimal compensation, are willing to save less, i.e. exert more effort. This analogy, how-

ever, has its limits. The precautionary saving motive increases in the absolute prudence −u′′′/u′′,
as demonstrated by Kimball (1990). Nevertheless, even an arbitrarily high level of the absolute

prudence is not sufficient to guarantee the optimum with a positive minimal compensation. The

CARA utility function, for which the absolute prudence equals the absolute risk aversion, always

involves the lowest compensation of zero. In this case, since the agent preferences over lotteries are

independent of wealth, providing an unconditional income does not affect the incentive constraint.

Proposition 3. Suppose that Assumption 1 holds. The minimal compensation is positive if

limc→0 u
′(c) = +∞. When the utility function has non-increasing absolute risk aversion, the mini-

mal compensation is positive for an arbitrary distribution of output only if limc→0 u
′(c) = +∞.

Proof. The necessary condition for the corner solution (2) is never satisfied when limc→0 u
′(c) =

+∞, which proves the ‘if’ part. To prove the ‘only if’ part, suppose that u′(0) is finite and construct

a distribution of output with some ȳ ∈ Y such that p0(ȳ)
p1(ȳ) = u′(0)

u′(ε) . When the absolute risk aversion

is non-increasing, u′(c)
u′(c+ε) is non-increasing with c, since ∂

∂c
u′(c)
u′(c+ε) = (a(c+ ε)− a(ε)) u′(c)

u′(c+ε) , where
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a(c) ≡ −u
′′(c)
u′(c) stands for the absolute risk aversion. Hence, for any w(ȳ) ≥ 0 the left-hand side of

(1) is non-positive and the only possible solution lays in the corner with w(ȳ) = 0.

An unbounded marginal utility from consumption at zero is a sufficient condition for a positive

minimal pay. The shirking agent has higher consumption, since he does not incur the cost ε. When

limc→0 u
′(c) = +∞ and compensation is zero at some output level, the differences in marginal

utilities with and without effort dominate any possible difference in odds. As a result, a marginal

increase in compensation for any output level, starting from 0, improves the agent’s expected

utility from exerting effort in comparison to shirking. In other words, the principal can decrease

the utility cost of exerting effort u(c + ε) − u(c) by a large amount by marginally increasing the

minimal compensation above zero. This result is apparent when limc→0 u(c) = −∞: without the

positive minimal compensation the expected utility of exerting effort is −∞, while the expected

utility of shirking is finite. However, the results holds also for utility functions taking finite values

at zero consumption, e.g. CRRA utility with the relative risk aversion lower than 1.

Under plausible conditions, the unbounded marginal utility at zero becomes a necessary condition

for a positive minimal pay for an arbitrary distribution of output. For this result to hold, we need

a non-increasing absolute risk aversion. Individual preferences satisfy this realistic property if and

only if the propensity to take risks does not decrease with wealth. If, on the contrary, the absolute

risk aversion is increasing and the marginal utility of consumption is bounded, then we can always

find a distribution of output which would imply a zero minimal compensation. Finally, note that

Propositions 2 and 3 are consistent with each other, since an unbounded marginal utility at zero

implies prudence in the neighborhood of zero consumption.6

4 Numerical example

Assumption 2. The utility function is u(c) = c1−σ

1−σ , σ > 0. There are two possible output re-

alizations Y = {0, ȳ}. The high output realization is possible only under effort: p1(ȳ) = p ∈
(0, 1), p0(ȳ) = 0.

Lemma 1. Under Assumption 2 the optimal contract is linear in the cost of effort, i.e. for any σ

and p there exist ω(σ, p) and β(σ, p) such that the optimal contract satisfies

w(0) = ω(σ, p)ε, w(ȳ) = w(0) + β(σ, p)ε. (4)

Proof. In the Appendix.

Under simplifying Assumption 2 the optimal contract is linear in effort cost ε. The compensation

can be described with two coefficients: ω, which stands for the guaranteed pay, and β, which

stands for the bonus for the high output realization. I compare the optimal contract with the ‘no

insurance’ contract, in which the agent is paid only when the high output is realized. In such

6Suppose that u′′′ ≤ 0 at some interval (0, c̄) with c̄ > 0. We can bound u′′(0) from below by u′′(c̄), which in
turn allows us to bound u′(0) from above by u′(c̄)− c̄u′′(c̄) <∞.
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contract the incentive provision requires that the agents receives β′(σ, p)ε in the high output state,

where β′(σ, p) ≡ p
1

σ−1 .

Figure 1 shows the optimal and ‘no insurance’ contracts for different values of relative risk aversion

σ and probability of high output realization p. The parameter σ is kept below 1, because only

then ‘no insurance’ contract can motivate effort. The rows correspond to different probabilities

of the high output realization under effort. The left column presents the coefficients ω and β of

the optimal contract and the coefficient β′ of ‘no insurance’ contract. The right column shows the

relative cost of providing incentives with ‘no insurance’ contract.

When the risk aversion is low, the minimal compensation is minuscule - the optimum is indistin-

guishable from ‘no insurance’ contract. As the risk aversion increases, both ω and β steadily rise.

However, for ‘no insurance’ contract to provide the same incentives, β′ has to grow much quicker.

When σ approaches 1, β′ diverges to +∞, while ω and β remain finite. The relative cost of provid-

ing incentives without a guaranteed compensation is thus exploding. When the probability of high

output realization is low, it is much harder to provide incentives for effort without insurance. As

a result, β′ and the cost gap between the two contracts increase even faster with the relative risk

aversion.

Figure 1: Comparison of the optimal and ‘no insurance’ contracts
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It is notable that a rather small minimal compensation can lead to huge differences in the cost of

incentives. The exercise is conducted for low values of the relative risk aversion, since only then the

comparison with ‘no insurance’ contract is possible. Figure 2 shows that for higher values of the

risk aversion the guaranteed compensation ω can be substantial and exceed the value of bonus β.

Figure 2: The optimal contract for high levels of the risk aversion
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5 Application to taxation

In this section I propose two interpretations of the theoretical framework studied above. In both

environments there is a government that sets up an income tax with the sole aim of maximizing

the tax revenue. Moreover, I assume that the utility functions of individuals feature the unbounded

marginal utility at zero consumption.

Consider an entrepreneur endowed with wealth ε > 0. The wealth can be either consumed or in-

vested in a venture that is risky, yet profitable in expectations. This investment decision, which is

unobserved by the government, affects the distribution of entrepreneur’s income. Moreover, sup-

pose that with positive probability venture fails to produce any value. In this case the government
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cannot tell apart the unlucky entrepreneurs from the agents that simply consumed their endow-

ment. Nevertheless, by Proposition 3 providing transfers to entrepreneurs with no income improves

incentives for risky investment and leads to higher tax revenue. Albanesi (2006) characterizes the

optimal taxation of entrepreneurial income in the presence of moral hazard. However, she assumes

that the cost of effort is additively separable from consumption, which by Proposition 1 precludes

any incentive role of the positive transfer for unlucky entrepreneurs. It is natural to think that

entrepreneurs’ consumption is not independent of their investment choices, since the raised funds

are frequently used to throw lavish startup parties.7

Alternatively, interpret the agent as an individual who considers going to college. The monetary

cost of college ε becomes the sum of admission fees and foregone earnings. If both educated and

uneducated workers face a possibility of zero labor productivity, which can be interpreted as chronic

unemployment or disability, then by Proposition 3 transfers to workers with no earnings improve the

incentives for education. Hence, when the return to education is sufficiently high, the sole incentive

provision can justify a redistributive income tax even if the government cares only about the total

tax revenue. Note that, similarly to Badel and Huggett (2014), I assume that the government

cannot base its policies on the individual’s education decision. An alternative approach, in which

the government optimizes with respect to both the income tax and education subsidies, was explored

by Bovenberg and Jacobs (2005) and Krueger and Ludwig (2013).

6 Conclusions and extensions

The relation between insurance and incentives is not necessarily monotone. Although no risk

and full insurance precludes incentives, not always full risk and no insurance, i.e. paying the

agent a constant fraction of output, implies the strongest incentives. I show that when effort and

consumption are complements, increasing insurance by introducing an unconditional minimal pay

can strengthen incentives for effort. When the cost of effort is monetary, it happens only when

agents are prudent and always when the marginal utility of consumption is unbounded at zero

consumption. I argue that these results are policy relevant. They highlight the efficiency role of

unconditional cash transfers in encouraging a costly investment, be it an entrepreneurial activity

or education.

In the remainder of this section I discuss two possible extensions. The assumption of binary effort

simplifies the analysis, since we need to consider only a single incentive constraint. Some results

generalize to the case of continuous effort. I will show that the ‘if’ part of Proposition 3 holds also

in this case, namely: limc→0u
′(c) = ∞ implies that a positive minimal is optimal. Suppose that

the agent chooses the effort e ∈ [0, 1]. The effort affects the probability mass function pe(y), which

is differentiable in effort at each output level. I assume that pe(y) ≥ p > 0 for all y ∈ Y and all

effort levels e ∈ [0, 1], which precludes the ‘unpleasant theorem’ of Mirrlees (1999). Suppose that

the principal wants to implement the effort level e∗ > 0. Then the agent’s expected utility from

exerting effort e is
∑
y pe(y)u(w(y) + (e∗ − e)ε).8 Suppose that the marginal utility is unbounded

7‘Going too big with the launch party’ is the first entry on the list of common startup mistakes in Porges, S.
(2013, May 17). The 10 PR Disasters All Startups Need To Avoid. Forbes. Retrieved from http://www.forbes.com.

8The principal, besides paying the compensation w, provides the agent with resources to cover the cost of effort.
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at zero and that there is an output level y ∈ Y with w(y) = 0. By marginally decreasing effort, the

agent gains an unbounded amount in utility terms by avoiding the zero consumption, while loses

at most a finite value due to the affected distribution of output. Hence, the unbounded marginal

utility at zero consumption implies a positive minimal compensation.

The presented model is static. Spear and Srivastava (1987) express a dynamic moral hazard model

with a promised-utility approach, where the agent’s compensation consists of an immediate payoff

and future utility promises, which need to be fulfilled by the principal. On the one hand, the

dynamic problem of the principal involves additional promise-keeping constraints which can give

raise to the positive minimal pay even without the incentive justification. On the other hand, the

promise-keeping constraint in the moral hazard model is expressed as equality. The principal cannot

provide neither less nor more utility than promised. If the promised utility along some output path

is decreasing, it’s likely that so will the minimal positive pay. Rogerson (1985) and Thomas and

Worrall (1990) show that, with an additively separable disutility from effort and a utility from

consumption which is unbounded below, the promised utility converges to −∞ with probability 1.

The investigation of the limiting behavior of the promised utility with complementarity between

effort and consumption is an interesting research topic, however it is beyond the scope of this paper.
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Appendix: additional proofs

Proof of Lemma 1. Denote the inverse function of u with g and the inverse function of u′ with h.

We can express the bonus as a function of w(0) with the (IC) constraint

w(ȳ) = g

(
1

p
u(w(0) + ε)− 1− p

p
u(w(0))

)
. (5)

By Proposition 3 we know that the minimal compensation is positive. We can use the interior

optimality condition (1) with respect to w(0) and w(ȳ) to obtain

w(ȳ) = h

(
u′(w(0))− 1

1− p
u′(w(0) + ε)

)
. (6)

Combining both equations and dividing by w(0), we get

(
1

p
(1 + ε/w(0))1−σ − 1− p

p

) 1
1−σ

=

(
1− 1

1− p
(1 + ε/w(0))−σ

)− 1
σ

. (7)

The equation above is affected by ε or w(0) only through the ratio ε/w(0). It means that if we

perturb ε and adjust w(0) to keep the ratio constant, the equation will be satisfied. Hence, there

exists ω(σ, p) such that w(0) = ω(σ, p)ε. Now take (5), subtract w(0) from both sides and plug

ω(σ, p) on the right-hand side to get

w(ȳ)− w(0) =

[(
1

p
(1 + ω(σ, p)−1)1−σ − 1− p

p

) 1
1−σ

− 1

]
ω(σ, p)ε, (8)

which defines the term β(σ, p).
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