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KNITRO

fval fcount time

fmincon -103.6194 2197 1.578750
knitro a'la fmincon -103.1450 144 0.094221
knitro a'la knitro -151.1187 126 0.074921
knitro with 1st deriv -151.1187 14 0.017827
knitro in AMPL -151.1187 7 0.00111
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1. Understanding an economic problem as an optimization

problem

Unconstrained optimization

maxx f (x)
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Constrained optimization

maxx f (x)

s.t.

g(x) ≥ 0

h(x) = 0



1. Understanding an economic problem as an optimization

problem

Equation Solving as constrained optimization

maxx 0

s.t.

h(x) = 0



1. Understanding an economic problem as an optimization

problem

A private economy as constrained optimization

maxx 0

s.t.

PrivateEquilibriumConditions(x) = 0

where x are the parameters of the policy function and
PrivateEquilibriumConditions(x) are the equilibrium conditions of the private
sector (FOCs, market clearing)



1. Understanding an economic problem as an optimization

problem

A Ramsey Problem as constrained optimization

maxx WelfareFunction(x)

s.t.

PrivateEquilibriumConditions(x) = 0

where WelfareFunction(x) is the planners objective function



1. Understanding an economic problem as an optimization

problem

Maximum Likelihood estimation as unconstrained optimization

maxy Likelihoodfunction(y ,Data)

where y are the parameters to be estimated and Likelihoodfunction(y ,Data) is
the likelihood function given some Data



1. Understanding an economic problem as an optimization

problem

SMM Estimating a model as unconstrained optimization

miny (Moments(Data)− SimulatedMoments(PolicyFunctions(y), y ,Shocks))2

where y are the deep parameters of the model and PolicyFunctions(y) is the
model solution as a function of the deep parameters (which is given),
Moments(Data) provides the moments of some given Data and
SimulatedMoments(PolicyFunctions(y), y , Shocks) gives the simulated
moments given the model solution, the model parameters and a long sequence
of randomly drawn shocks)



1. Understanding an economic problem as an optimization

problem

Simultaneously solving and SMM estimating a model as
constrained optimization

minx,y (Moments(Data)− SimulatedMoments(PolicyFunctions(x , y), y , Shocks))2

s.t.

PrivateEquilibriumConditions(x , y) = 0



2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization

minx f (x) = x4 + 1
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2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization (newton's method)

minx f (x) = x4 + 1

f ′(x) = 4x3
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2. How to solve a simple optimization problem numerically

Example 1: unconstrained optimization

minx f (x) = x4 + 1

Example 2: equation solving

F (x) = 4x3 = 0

F (x) =
∂f (x)

∂x
= 4x3 = 0

� Optimization = Root �nding of derivative = Equation solving

� Global convergence: for well behaved (smooth) functions (more
complicated, conceptually similar) algorithms converge in �nite
number of iterations from any starting point
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3. Global vs local optima

� The solutions numerical routines �nd are always local

� an optimum found numerically is one local optimum of possibly many
� a root found numerically is one root of possibly many

� Global solutions can not be found numerically

� Remedies:

� Start from di�erent starting points and hope to �nd all optima
� If you know how many local optima there are you can try to �nd

them all (E.g. minimum of convex function over convex constraint
set is unique)



4. The crucial role of derivatives for derivative based solvers

Direction

� 2 possibilities:

� move in random direction continue if right direction (derivative free
method, fminsearch, new KNITRO option)

� know derivative, move downward

� derivatives (jacobian) can be found

� analytically

� analytical derivatives faster especially in higher dimensions
(evaluation and convergence)

� numerically (�nite di�erences)

� forward di�erences:
∂f (xi ,x−i )

∂x
≈ f (xi ,x−i )+f (xi+∆,x−i )

∆

� central di�erences:
∂f (xi ,x−i )

∂xi
≈ f (xi−∆,x−i )+f (xi+∆,x−i )

2∆
(twice slower,

more precise)
� numerical derivatives are imprecise and requires 1 or 2 evaluations of

the function per dimension
� When using numerical derivatives save computing time by providing a

pattern (zero, nonzero)



4. The crucial role of derivatives for derivative based solvers

Step size

� 2 possibilities:

� heuristic step size, (e.g. as function of previous step)
� second order derivatives (hessian) to approximate minimum

� second order derivatives (hessian) can be found either analytically or
approximated numerically

� Full hessian costly to evaluate
� Approximation of hessian doesn't require full hessian and might be
faster

� Heuristics might be faster



4. The crucial role of derivatives for derivative based solvers

� My experience: supply derivatives, forget about hessian.

� Standard in computational macro, not sure about nonlinear
estimation.

� Analytical derivatives impossible if your objective/constraint function
contains black boxes like DYNARE (e.g. OSR or GMM)



5. The di�erences between linear, quadratic, nonlinear and

complementarity problems

� Linear optimization

� f (x), g(x), h(x) can be written as Ax − b
� has either none, one or a continuum of solutions
� can be solved in one iteration
� solving a linear equation system is same as matrix inversion (is
feasible where the standard inversion becomes infeasible due to
memory constraints (for large matrices))

� Quadratic problems

� are special cases of nonlinear problems that are easier to solve (not
possible to declare in KNITRO-MATLAB)

� General nonlinear problems

� Complementarity problems (MPEC)

� h(x) = 0 can be written as min [ i(x) , j(x) ] = 0

� Tell the solver what problem u have (automatic in AMPL, not in
MATLAB)



6. Soft constraints vs hard bounds

� bounds are of the type xi ≥ a

� bounds could be written as linear constraints

� writing them as bounds makes sure that they are never violated
during the iterative solution algorithm (in KNITRO, unless otherwise
speci�ed)

� important for functions that are not de�ned over R like log, sqrt etc.

� e.g. utility u(c) = log(c) requires c > 0

� implement as c ≥ 1e − 10



7. Software

Mathematical coding languages (MATLAB, FORTRAN, AMPL)

m Interface

Solver (fmincon, fminsearch, KNITRO, ...)

� Mathematical coding language is used to evaluate the objective and
constraint functions f (x), g(x), h(x) and their derivatives

� Solver decides where to evaluate them: x

� Typically most computing time used for evaluation



7. Software

� One could write its own solver in any language, but good solves are
very complicated

� Some ready made solvers are product speci�c (fmincon - MATLAB)

� Others have interfaces to many products (KNITRO -
MATLAB/FORTRAN/C++/AMPL/PYTHON...)

� Almost all that is discussed in this course about KNITRO is true for
many other solvers

� KNITRO is probably the best product in the industry

� Advantages of KNITRO compared to fmincon:

� faster and more reliable
� more options
� reliably solves complementarity problems



8. Availability at the EUI

� KNITRO (Solver)

� 10 user licenses administered by Arpad (1 user, 1 computer,
unlimited threads/cores)

� 1 �oating license (1 user and computer at a time, 1 thread/core)
� free student licenses

� max 300 variables and constraints
� for 6 month, only once per computer

� Interfaces to MATLAB/AMPL/PYTHON/FORTRAN/C++...

� AMPL (Mathematical coding language)

� free student licenses

� max 300 variables and constraints
� unlimited time

� Interfaces to KNITRO and many other solvers



8. Availability at the EUI

� NEOS Server

� server with over 60 solvers, incl. KNITRO
� no solver license required
� huge computing power available for free (apparently incl. parallel)
� easy to use with AMPL

� write code in AMPL
� send to NEOs server who executes immediately (either via website

www.neos-server.org or via AMPL (Kestrel))
� receive results (in AMPL (Kestrel) or via website)
� Kestrel is currently blocked by EUI �rewall

� works with other languages as well (FORTRAN, GAMS, ... ) but not
with MATLAB



9. Practical Example

Complementarity constraints

Ramsey problem of setting a linear income tax t and lump-sum transfer
T in the economy with 2 di�erent agents.

max
{c1,n1,c2,n2,t,T}

U1 (c1, n1) + U2 (c2, n2)

s.t.
for i = 1, 2 ci = (1− t)wini + T
for i = 1, 2 ni = argmaxn≥0 Ui ((1− t)win + T , n)

t (w1n1 + w2n2) = E + 2T



9. Practical Example

Complementarity constraints

How to express ni = argmaxn≥0 Ui ((1− t)win + T , n)?
We can use the �rst order condition. De�ne

slacki = −
(
∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci

)
.

Now the constraint is equivalent to

slacki = 0, ni ≥ 0︸ ︷︷ ︸ or slacki ≥ 0, ni = 0︸ ︷︷ ︸
interior solution corner solution

We can write it more compactly as

slacki × ni = 0, slacki ≥ 0, ni ≥ 0.



9. Practical Example

Writing the problem a'la fmincon

Solve

min
{c1,n1,c2,n2,t,T}

− (U1 (c1, n1) + U2 (c2, n2))

s.t. equality constraints

for i = 1, 2 ci − (1− t)wini + T = 0
t (w1n1 + w2n2)− E + 2T = 0

for i = 1, 2 ni ×
(

∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci

)
= 0

s.t. inequality constraints

for i = 1, 2 ∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci
≤ 0.



9. Practical Example

Writing the problem a'la knitro

Solve

min
{c1,n1,c2,n2,t,T ,slack1,slack2}

− (U1 (c1, n1) + U2 (c2, n2))

s.t. equality constraints

for i = 1, 2 ci − (1− t)wini + T = 0
t (w1n1 + w2n2)− E + 2T = 0

for i = 1, 2 slacki = −
(

∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci

)
s.t. complementarity constraints

for i = 1, 2 ni "complements" slacki .



9. Practical Example

Results

fval fcount time

fmincon -103.6194 2197 1.578750
knitro a'la fmincon -103.1450 144 0.094221
knitro a'la knitro -151.1187 126 0.074921
knitro with 1st deriv -151.1187 14 0.017827
knitro in AMPL -151.1187 7 0.00111



10. Analytical derivatives in AMPL: advantages and

limitations

� Calculating derivatives by hand is time consuming and prone to
algebraic and coding errors

� In AMPL derivatives are calculated automatically.

� Everything you can do in AMPL is smooth

� Limitations:

� The calculation of these derivatives is done automatically and not
necessarily e�ciently

� Function and derivative evaluation be slower than MATLAB

� Very limited set of functions (no interpolation exception: 1D linear)
� No graphical user interface



11. Obtaining analytical derivatives with MATLAB's

symbolic toolbox and the matlabfunction command

� Calculating derivatives by hand is time consuming and prone to
algebraic and coding errors.

� In MATLAB the symbolic toolbox can help

� Write objective function and constraint functions as symbolic
expressions

� Derive them using symbolic toolbox
� Automatically create a function m�le that evaluates the resulting
expressions in an e�cient manner with matlabfunction

� Use them directly with anonymous functions or copy paste these
functions into your nested function matlab optimization m�le

� If necessary add adjustments (manually entered computations)

� Limitations:

� symbolic toolbox can only handle scalars and elementary functions.
Do rest by hand (use derivativeCheck)

� Not fully automated as in AMPL

� Example can be found in MATLAB help (search �Using Symbolic
Mathematics with Optimization Toolbox� Solvers�)



12. The advantage of smooth problems and some tips how

obtain them

� Numerical solvers like KNITRO are suitable only for smooth
problems (f (x), g(x) and h(x) are smooth , i.e. continuous and
di�erentiable ∀x ∈ [lb, ub])

� The solver looks for local optima and identi�es them by points with
zero derivatives

� Zero derivatives do not identify minima at kinks

� The solver chooses the direction of search and the step size using
derivatives

� Derivatives do not approximate discontinuous or nondi�erentiable
functions

� Most real economic models are smooth in their nature

� I speculate that most empirical optimizations are also smooth (e.g.
OLS, L1)



12. The advantage of smooth problems and some tips how

obtain them

� Problems can be non continuous because...

� they are discrete because...

� They are really discrete (e.g. game theory): do not use KNITRO
� We discretize a decision variable (e.g. in VFI): Either use

interpolation instead of discretizing or do not use KNITRO
(Exogenous states don't matter normally)

� If mixed discrete continuous problem: use Mixed Integer Nonlinearly
Constrained Optimization (KNITRO can apparently do that too) or
split in a discrete number of continuous sub-problems and use
KNITRO normally on sub-problems

� there are jumps:

� Split in smooth sub-problems at the jump point
� Avoid jumps if anyhow possible (e.g. approximate by smooth

function)
� Never introduce jumps as a �penalty� for unde�ned regions. Use

bounds.



12. The advantage of smooth problems and some tips how

obtain them

� Problems can be non di�erentiable because

� We use non di�erentiable functions like linear interpolation to
approximate functions (this might include the numerical integration
method in special cases):

� Use smooth interpolation (Chebychev polynomials, cubic splines; in
MATLAB do by hand to be able to di�erentiate and for speed)

� We do not extrapolate:

� extrapolate carefully or better make sure we never need to (especially
with Chebychev polynomials)

� Our economic problem contains fundamental non-di�erentiabilities
like max functions:

� Write as complementarity problem
� Approximate by smooth functions



12. The advantage of smooth problems and some tips how

obtain them

� You may be lucky and get away with some non-smoothness if its at
the right places (away from the solution) or if its almost smooth
(small kinks, jumps).

� It's always worth a try to work with a non smooth problem if the
problem is already coded

� But when you formulate the problem from scratch avoid
non-smoothness wherever you can

� If the solver fails and the last point of evaluation was at a kink you
know that kink is the problem



13. Some options for �ne tuning

� All options can be passed to KNITRO via an .ops �le. Most also via
a MATLAB options structure (optimset)

� GradDeriv, ObjDeriv: whether to supply 1st derivatives

� Algorithms: 4 di�erent algorithms available

� Tolerances (TolX, TolFun, TolCon): de�nes what is considered a
solution

� MaxFunEvals, MaxIter: when to give up

� Output: what to print to the screen

� Multistart (only .ops �le): run repeatedly from multiple starting
points

� Parallel: evaluate �nite di�erences in parallel, irrelevant if analytical
derivative provided

� Tuner (only .ops �le): automatically looks for best options

� Nonlinear least squares: special algorithm available using command
�knitromatlab_lsqnonlin�



14. Speed
General:

� Initial guesses (warm start)

� Homotopy
� When doing things on a grid obtain guesses from close grid points
that are already solved

� In MPECs avoid initializing complementarity variables at 0
� In AMPL you can initialize Lagrangian multipliers too

� Supply derivatives

� Guarantee smoothness

In MATLAB:

� Don't do unnecessary calculations (use if)

� Reuse calculations that are common in the constraint and in the
objective

� Only calculate the derivative when needed (use nargout)

� To pass parameters to constraint and objective functions use shared
variables in nested functions instead of anonymous functions

� General advice: use pro�ler



15. Trouble shooting

� The fact that you don't get a red error message in MATLAB doesnt
mean the solver was sucessful. Always check exit�ag!

� If the solver fails

� Look at the exit�ag and read the manual

� No precises solution (not smooth, no analytical derivatives)
� No feasible point (mistake in constraints)
� Evaluation not possible (encountered NaN, maybe due to missing

bound or coding error)

� Set option output to �iter-detailed�
� Look at the last guess, the solver might stop at a Kink or Jump
� In MATLAB have crucial diagnostics printed at each evaluation of
the constraint or objective function

� In MATLAB set breakpoints to analyze what happens in the
constraint or objective function at each iteration



15. Trouble shooting

� If you use KNITRO repeatedly and it happens to fail for a small
fraction:

� The 1% failures can cost you 99% of the computation time...
� Don't allow too many iterations to avoid time consuming dead ends
(restrict maxiter, maxfuneval)

� Try to �nd out whats special about the failing points
� Use �if exit�ag~=0� to try out di�erent options (algorithms),
starting values etc.


