
An introduction into numerical optimization with

KNITRO

Pawel Doligalski and Dominik Thaler

15 September 2014

KNITRO

fval fcount time

fmincon -103.6194 2197 1.578750
knitro a'la fmincon -103.1450 144 0.094221
knitro a'la knitro -151.1187 126 0.074921
knitro with 1st deriv -151.1187 14 0.017827
knitro in AMPL -151.1187 7 0.00111

Outline

Theory

1. Understanding an economic problem as an optimization problem
2. How to solve a simple optimization problem numerically
3. Global vs local optima
4. The crucial role of derivatives for derivative based solvers
5. Linear, quadratic, nonlinear and complementarity problems
6. Soft constraints vs hard bounds
Software

7. Software
8. Availability at the EUI
Implementation

9. Practical Example
10. Analytical derivatives in AMPL
11. Analytical derivatives with MATLAB
Practical Tips

12. The advantage of smooth problems and some tips how obtain them
13. Some options for �ne tuning
14. Speed
15. Trouble shooting

1. Understanding an economic problem as an optimization

problem

Unconstrained optimization

maxx f (x)

1. Understanding an economic problem as an optimization

problem

Constrained optimization

maxx f (x)

s.t.

g(x) ≥ 0

h(x) = 0

1. Understanding an economic problem as an optimization

problem

Equation Solving as constrained optimization

maxx 0

s.t.

h(x) = 0

1. Understanding an economic problem as an optimization

problem

A private economy as constrained optimization

maxx 0

s.t.

PrivateEquilibriumConditions(x) = 0

where x are the parameters of the policy function and
PrivateEquilibriumConditions(x) are the equilibrium conditions of the private
sector (FOCs, market clearing)

1. Understanding an economic problem as an optimization

problem

A Ramsey Problem as constrained optimization

maxx WelfareFunction(x)

s.t.

PrivateEquilibriumConditions(x) = 0

where WelfareFunction(x) is the planners objective function

1. Understanding an economic problem as an optimization

problem

Maximum Likelihood estimation as unconstrained optimization

maxy Likelihoodfunction(y ,Data)

where y are the parameters to be estimated and Likelihoodfunction(y ,Data) is
the likelihood function given some Data

1. Understanding an economic problem as an optimization

problem

SMM Estimating a model as unconstrained optimization

miny (Moments(Data)− SimulatedMoments(PolicyFunctions(y), y ,Shocks))2

where y are the deep parameters of the model and PolicyFunctions(y) is the
model solution as a function of the deep parameters (which is given),
Moments(Data) provides the moments of some given Data and
SimulatedMoments(PolicyFunctions(y), y , Shocks) gives the simulated
moments given the model solution, the model parameters and a long sequence
of randomly drawn shocks)

1. Understanding an economic problem as an optimization

problem

Simultaneously solving and SMM estimating a model as
constrained optimization

minx,y (Moments(Data)− SimulatedMoments(PolicyFunctions(x , y), y , Shocks))2

s.t.

PrivateEquilibriumConditions(x , y) = 0

2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization

minx f (x) = x4 + 1

2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization

minx f (x) = x4 + 1

2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization

minx f (x) = x4 + 1

2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization

minx f (x) = x4 + 1

2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization (newton's method)

minx f (x) = x4 + 1

f ′(x) = 4x3

2. How to solve a simple optimization problem numerically
Example 1: unconstrained optimization (newton's method)

minx f (x) = x4 + 1

f ′(x) = 4x3

2. How to solve a simple optimization problem numerically

Example 1: unconstrained optimization

minx f (x) = x4 + 1

Example 2: equation solving

F (x) = 4x3 = 0

F (x) =
∂f (x)

∂x
= 4x3 = 0

� Optimization = Root �nding of derivative = Equation solving

� Global convergence: for well behaved (smooth) functions (more
complicated, conceptually similar) algorithms converge in �nite
number of iterations from any starting point

2. How to solve a simple optimization problem numerically

Example 1: unconstrained optimization

minx f (x) = x4 + 1

Example 2: equation solving

F (x) = 4x3 = 0

F (x) =
∂f (x)

∂x
= 4x3 = 0

� Optimization = Root �nding of derivative = Equation solving

� Global convergence: for well behaved (smooth) functions (more
complicated, conceptually similar) algorithms converge in �nite
number of iterations from any starting point

2. How to solve a simple optimization problem numerically

Example 1: unconstrained optimization

minx f (x) = x4 + 1

Example 2: equation solving

F (x) = 4x3 = 0

F (x) =
∂f (x)

∂x
= 4x3 = 0

� Optimization = Root �nding of derivative = Equation solving

� Global convergence: for well behaved (smooth) functions (more
complicated, conceptually similar) algorithms converge in �nite
number of iterations from any starting point

3. Global vs local optima

� The solutions numerical routines �nd are always local

� an optimum found numerically is one local optimum of possibly many
� a root found numerically is one root of possibly many

� Global solutions can not be found numerically

� Remedies:

� Start from di�erent starting points and hope to �nd all optima
� If you know how many local optima there are you can try to �nd

them all (E.g. minimum of convex function over convex constraint
set is unique)

4. The crucial role of derivatives for derivative based solvers

Direction

� 2 possibilities:

� move in random direction continue if right direction (derivative free
method, fminsearch, new KNITRO option)

� know derivative, move downward

� derivatives (jacobian) can be found

� analytically

� analytical derivatives faster especially in higher dimensions
(evaluation and convergence)

� numerically (�nite di�erences)

� forward di�erences:
∂f (xi ,x−i)

∂x
≈ f (xi ,x−i)+f (xi+∆,x−i)

∆

� central di�erences:
∂f (xi ,x−i)

∂xi
≈ f (xi−∆,x−i)+f (xi+∆,x−i)

2∆
(twice slower,

more precise)
� numerical derivatives are imprecise and requires 1 or 2 evaluations of

the function per dimension
� When using numerical derivatives save computing time by providing a

pattern (zero, nonzero)

4. The crucial role of derivatives for derivative based solvers

Step size

� 2 possibilities:

� heuristic step size, (e.g. as function of previous step)
� second order derivatives (hessian) to approximate minimum

� second order derivatives (hessian) can be found either analytically or
approximated numerically

� Full hessian costly to evaluate
� Approximation of hessian doesn't require full hessian and might be
faster

� Heuristics might be faster

4. The crucial role of derivatives for derivative based solvers

� My experience: supply derivatives, forget about hessian.

� Standard in computational macro, not sure about nonlinear
estimation.

� Analytical derivatives impossible if your objective/constraint function
contains black boxes like DYNARE (e.g. OSR or GMM)

5. The di�erences between linear, quadratic, nonlinear and

complementarity problems

� Linear optimization

� f (x), g(x), h(x) can be written as Ax − b
� has either none, one or a continuum of solutions
� can be solved in one iteration
� solving a linear equation system is same as matrix inversion (is
feasible where the standard inversion becomes infeasible due to
memory constraints (for large matrices))

� Quadratic problems

� are special cases of nonlinear problems that are easier to solve (not
possible to declare in KNITRO-MATLAB)

� General nonlinear problems

� Complementarity problems (MPEC)

� h(x) = 0 can be written as min [i(x) , j(x)] = 0

� Tell the solver what problem u have (automatic in AMPL, not in
MATLAB)

6. Soft constraints vs hard bounds

� bounds are of the type xi ≥ a

� bounds could be written as linear constraints

� writing them as bounds makes sure that they are never violated
during the iterative solution algorithm (in KNITRO, unless otherwise
speci�ed)

� important for functions that are not de�ned over R like log, sqrt etc.

� e.g. utility u(c) = log(c) requires c > 0

� implement as c ≥ 1e − 10

7. Software

Mathematical coding languages (MATLAB, FORTRAN, AMPL)

m Interface

Solver (fmincon, fminsearch, KNITRO, ...)

� Mathematical coding language is used to evaluate the objective and
constraint functions f (x), g(x), h(x) and their derivatives

� Solver decides where to evaluate them: x

� Typically most computing time used for evaluation

7. Software

� One could write its own solver in any language, but good solves are
very complicated

� Some ready made solvers are product speci�c (fmincon - MATLAB)

� Others have interfaces to many products (KNITRO -
MATLAB/FORTRAN/C++/AMPL/PYTHON...)

� Almost all that is discussed in this course about KNITRO is true for
many other solvers

� KNITRO is probably the best product in the industry

� Advantages of KNITRO compared to fmincon:

� faster and more reliable
� more options
� reliably solves complementarity problems

8. Availability at the EUI

� KNITRO (Solver)

� 10 user licenses administered by Arpad (1 user, 1 computer,
unlimited threads/cores)

� 1 �oating license (1 user and computer at a time, 1 thread/core)
� free student licenses

� max 300 variables and constraints
� for 6 month, only once per computer

� Interfaces to MATLAB/AMPL/PYTHON/FORTRAN/C++...

� AMPL (Mathematical coding language)

� free student licenses

� max 300 variables and constraints
� unlimited time

� Interfaces to KNITRO and many other solvers

8. Availability at the EUI

� NEOS Server

� server with over 60 solvers, incl. KNITRO
� no solver license required
� huge computing power available for free (apparently incl. parallel)
� easy to use with AMPL

� write code in AMPL
� send to NEOs server who executes immediately (either via website

www.neos-server.org or via AMPL (Kestrel))
� receive results (in AMPL (Kestrel) or via website)
� Kestrel is currently blocked by EUI �rewall

� works with other languages as well (FORTRAN, GAMS, ...) but not
with MATLAB

9. Practical Example

Complementarity constraints

Ramsey problem of setting a linear income tax t and lump-sum transfer
T in the economy with 2 di�erent agents.

max
{c1,n1,c2,n2,t,T}

U1 (c1, n1) + U2 (c2, n2)

s.t.
for i = 1, 2 ci = (1− t)wini + T
for i = 1, 2 ni = argmaxn≥0 Ui ((1− t)win + T , n)

t (w1n1 + w2n2) = E + 2T

9. Practical Example

Complementarity constraints

How to express ni = argmaxn≥0 Ui ((1− t)win + T , n)?
We can use the �rst order condition. De�ne

slacki = −
(
∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci

)
.

Now the constraint is equivalent to

slacki = 0, ni ≥ 0︸ ︷︷ ︸ or slacki ≥ 0, ni = 0︸ ︷︷ ︸
interior solution corner solution

We can write it more compactly as

slacki × ni = 0, slacki ≥ 0, ni ≥ 0.

9. Practical Example

Writing the problem a'la fmincon

Solve

min
{c1,n1,c2,n2,t,T}

− (U1 (c1, n1) + U2 (c2, n2))

s.t. equality constraints

for i = 1, 2 ci − (1− t)wini + T = 0
t (w1n1 + w2n2)− E + 2T = 0

for i = 1, 2 ni ×
(

∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci

)
= 0

s.t. inequality constraints

for i = 1, 2 ∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci
≤ 0.

9. Practical Example

Writing the problem a'la knitro

Solve

min
{c1,n1,c2,n2,t,T ,slack1,slack2}

− (U1 (c1, n1) + U2 (c2, n2))

s.t. equality constraints

for i = 1, 2 ci − (1− t)wini + T = 0
t (w1n1 + w2n2)− E + 2T = 0

for i = 1, 2 slacki = −
(

∂Ui

∂ni
+ (1− t)wi

∂Ui

∂ci

)
s.t. complementarity constraints

for i = 1, 2 ni "complements" slacki .

9. Practical Example

Results

fval fcount time

fmincon -103.6194 2197 1.578750
knitro a'la fmincon -103.1450 144 0.094221
knitro a'la knitro -151.1187 126 0.074921
knitro with 1st deriv -151.1187 14 0.017827
knitro in AMPL -151.1187 7 0.00111

10. Analytical derivatives in AMPL: advantages and

limitations

� Calculating derivatives by hand is time consuming and prone to
algebraic and coding errors

� In AMPL derivatives are calculated automatically.

� Everything you can do in AMPL is smooth

� Limitations:

� The calculation of these derivatives is done automatically and not
necessarily e�ciently

� Function and derivative evaluation be slower than MATLAB

� Very limited set of functions (no interpolation exception: 1D linear)
� No graphical user interface

11. Obtaining analytical derivatives with MATLAB's

symbolic toolbox and the matlabfunction command

� Calculating derivatives by hand is time consuming and prone to
algebraic and coding errors.

� In MATLAB the symbolic toolbox can help

� Write objective function and constraint functions as symbolic
expressions

� Derive them using symbolic toolbox
� Automatically create a function m�le that evaluates the resulting
expressions in an e�cient manner with matlabfunction

� Use them directly with anonymous functions or copy paste these
functions into your nested function matlab optimization m�le

� If necessary add adjustments (manually entered computations)

� Limitations:

� symbolic toolbox can only handle scalars and elementary functions.
Do rest by hand (use derivativeCheck)

� Not fully automated as in AMPL

� Example can be found in MATLAB help (search �Using Symbolic
Mathematics with Optimization Toolbox� Solvers�)

12. The advantage of smooth problems and some tips how

obtain them

� Numerical solvers like KNITRO are suitable only for smooth
problems (f (x), g(x) and h(x) are smooth , i.e. continuous and
di�erentiable ∀x ∈ [lb, ub])

� The solver looks for local optima and identi�es them by points with
zero derivatives

� Zero derivatives do not identify minima at kinks

� The solver chooses the direction of search and the step size using
derivatives

� Derivatives do not approximate discontinuous or nondi�erentiable
functions

� Most real economic models are smooth in their nature

� I speculate that most empirical optimizations are also smooth (e.g.
OLS, L1)

12. The advantage of smooth problems and some tips how

obtain them

� Problems can be non continuous because...

� they are discrete because...

� They are really discrete (e.g. game theory): do not use KNITRO
� We discretize a decision variable (e.g. in VFI): Either use

interpolation instead of discretizing or do not use KNITRO
(Exogenous states don't matter normally)

� If mixed discrete continuous problem: use Mixed Integer Nonlinearly
Constrained Optimization (KNITRO can apparently do that too) or
split in a discrete number of continuous sub-problems and use
KNITRO normally on sub-problems

� there are jumps:

� Split in smooth sub-problems at the jump point
� Avoid jumps if anyhow possible (e.g. approximate by smooth

function)
� Never introduce jumps as a �penalty� for unde�ned regions. Use

bounds.

12. The advantage of smooth problems and some tips how

obtain them

� Problems can be non di�erentiable because

� We use non di�erentiable functions like linear interpolation to
approximate functions (this might include the numerical integration
method in special cases):

� Use smooth interpolation (Chebychev polynomials, cubic splines; in
MATLAB do by hand to be able to di�erentiate and for speed)

� We do not extrapolate:

� extrapolate carefully or better make sure we never need to (especially
with Chebychev polynomials)

� Our economic problem contains fundamental non-di�erentiabilities
like max functions:

� Write as complementarity problem
� Approximate by smooth functions

12. The advantage of smooth problems and some tips how

obtain them

� You may be lucky and get away with some non-smoothness if its at
the right places (away from the solution) or if its almost smooth
(small kinks, jumps).

� It's always worth a try to work with a non smooth problem if the
problem is already coded

� But when you formulate the problem from scratch avoid
non-smoothness wherever you can

� If the solver fails and the last point of evaluation was at a kink you
know that kink is the problem

13. Some options for �ne tuning

� All options can be passed to KNITRO via an .ops �le. Most also via
a MATLAB options structure (optimset)

� GradDeriv, ObjDeriv: whether to supply 1st derivatives

� Algorithms: 4 di�erent algorithms available

� Tolerances (TolX, TolFun, TolCon): de�nes what is considered a
solution

� MaxFunEvals, MaxIter: when to give up

� Output: what to print to the screen

� Multistart (only .ops �le): run repeatedly from multiple starting
points

� Parallel: evaluate �nite di�erences in parallel, irrelevant if analytical
derivative provided

� Tuner (only .ops �le): automatically looks for best options

� Nonlinear least squares: special algorithm available using command
�knitromatlab_lsqnonlin�

14. Speed
General:

� Initial guesses (warm start)

� Homotopy
� When doing things on a grid obtain guesses from close grid points
that are already solved

� In MPECs avoid initializing complementarity variables at 0
� In AMPL you can initialize Lagrangian multipliers too

� Supply derivatives

� Guarantee smoothness

In MATLAB:

� Don't do unnecessary calculations (use if)

� Reuse calculations that are common in the constraint and in the
objective

� Only calculate the derivative when needed (use nargout)

� To pass parameters to constraint and objective functions use shared
variables in nested functions instead of anonymous functions

� General advice: use pro�ler

15. Trouble shooting

� The fact that you don't get a red error message in MATLAB doesnt
mean the solver was sucessful. Always check exit�ag!

� If the solver fails

� Look at the exit�ag and read the manual

� No precises solution (not smooth, no analytical derivatives)
� No feasible point (mistake in constraints)
� Evaluation not possible (encountered NaN, maybe due to missing

bound or coding error)

� Set option output to �iter-detailed�
� Look at the last guess, the solver might stop at a Kink or Jump
� In MATLAB have crucial diagnostics printed at each evaluation of
the constraint or objective function

� In MATLAB set breakpoints to analyze what happens in the
constraint or objective function at each iteration

15. Trouble shooting

� If you use KNITRO repeatedly and it happens to fail for a small
fraction:

� The 1% failures can cost you 99% of the computation time...
� Don't allow too many iterations to avoid time consuming dead ends
(restrict maxiter, maxfuneval)

� Try to �nd out whats special about the failing points
� Use �if exit�ag~=0� to try out di�erent options (algorithms),
starting values etc.

