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Abstract

The supplementary material contains the proof of the Revelation Principle and as-

sociated results (Appendix A) as well as the details of the calibration of the quan-

titative model and the computational algorithm (Appendix B).

A. Revelation principle

Below I prove the revelation principle for the general dynamic single-agent mechanism

design problem with hidden information and hidden action.

A.1. A general proof of the Revelation Principle

Consider two probability spaces (R1,BR1 , µR1) and (R2,BR2 , µR2). By Theorem 18.2 in

Billingsley (2008) there exists a unique product probability space (R1×R2,BR1×R2 , µR1×R2),

where BR1×R2 is a σ-algebra generated by BR1 × BR2 and µR1×R2(A × B) = µR1(A) ·
µR2(B) for all A ∈ BR1 and B ∈ BR2 . In what follows, I will apply this theorem

repeatedly.

The economy operates for T ≤ ∞ periods. The fundamentals of the economy are given

by three measurable spaces: a type space (Θ,BΘ), an outcome space (X,BX) and an

action space (A,BA), as well as a probability measure over full type histories µΘT , such

that (ΘT ,BΘT , µΘT ) is a probability space.

A randomization device is an arbitrary probability space. I will use three devices

(Ri,BRi , µRi) with i ∈ {x,m, a}, standing consecutively for the outcome randomization

device, the reporting randomization device and the action randomization device.
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A message space is a measurable space (M,BM ). A reporting strategy ρ consists of

a reporting randomization device (Rm,BRm , µRm) and a reporting function m : ΘT ×
RTm×XT →MT , where mt is (θt, rtm, x

t−1)−measurable for all t ≤ T . An action strategy

α contains an action randomization device (Ra,BRa , µRa) and an action function: a :

ΘT × RTm ×XT × RTa → AT , where at is (θt, rtm, x
t, rta)−measurable for all t ≤ T . The

measurability assumptions imply that a report or an action can depend on the entire past

history, but cannot depend on the future.1 The measurability assumptions also indicate

the order within a time period: first a report is sent, then an outcome is allocated by a

mechanism and finally an action is taken.

A mechanism consists of (i) a message space (M,BM ), (ii) an outcome randomization

device (Rx,BRx , µRx), (iii) an outcome function x : MT × RTx → XT , where xt is

(xt × rtx)−measurable for all t ≤ T and (iv) a recommended action strategy α. In a

single agent case, which is the sole focus of this paper, a recommended action strategy

does not play any substantive role and is included in a mechanisms for convenience in

setting up the planner’s problem.2

Since outcomes depend on reports, which in turn depend on outcomes, it is useful to de-

fine an auxiliary function which disentangles this relationship. For an outcome function

x and a reporting function m define a function ξx,m such that

ξx,m(θT , rTx , r
T
m) ≡ x(m(θT , rTm, ξx,m(θT , rTx , r

T
m)), rTx ). (1)

Since a report in period t can depend on outcomes up to period t − 1, it is easy to

see that ξx,m has uniquely defined values. Denote the expectation of some function

g : XT × AT × ΘT → R with respect to mechanism Ψ, reporting strategy ρ and action

strategy α, whenever the expectation is well defined, as

EΨ,ρ,α

{
g(x, a, θT )

}
≡ˆ

g(ξx,m(θT , rTx , r
T
m), a(θT , rTm, ξx,m(θT , rTx , r

T
m), rTa ), θT )dµΘT×RT

x×RT
m×RT

a
(θT , rTx , r

T
m, r

T
a ).

(2)

Conditional expectations are defined analogously.

I allow for additional restrictions on the equilibrium choices of agents by considering

arbitrary equilibrium constraints. For instance, in the main body of this paper the rele-

vant equilibrium constraints are the zero profit constraints and the limited commitment

constraints. Define an equilibrium constraint as (g, t), where g : XT × AT × ΘT → R
and t ∈ {0, ..., T}4. A mechanism Ψ with an associated strategies (ρ, α) satisfies the

equilibrium constraint (g, t) if EΨ,ρ,α{g(x, a, θT ) | θt1 , rt2m, xt3 , rt4a } ≥ 0. For any partic-

1For notational ease I do not allow reporting to depend on the action randomization device. Any joint
randomization of reports and actions is governed by the reporting randomization device.

2In contrast, in the case with many agents the recommended action may be useful by coordinating
actions of different agents (Myerson 1982).
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ular set of equilibrium constraints, a set of strategies (ρ, α) satisfying these equilibrium

constraints is given a mechanism Ψ is C(Ψ).

Define a utility function as a continuous function U : XT ×AT ×ΘT → R. A reporting

strategy ρ and an action strategy α constitute an equilibrium of a mechanism Ψ if

(ρ, α) ∈ arg max
(ρ̂,α̂)∈C(Ψ)

EΨ,ρ̂,α̂

{
U(x, â, θT )

}
. (3)

A resource function is a continuous function H : XT × AT × ΘT → R. A mechanism

Ψ with an associated equilibrium (ρ, α) is feasible if EΨ,ρ,α

{
H(x, a, θT )

}
≥ 0. A direct

mechanism is a mechanism with a message space (Θ,BΘ). A truthful reporting strategy,

denoted by ρ∗, is a reporting strategy with a reporting function m∗(h) = θT for all

h ∈ H. A direct mechanism is incentive-compatible if it has an equilibrium with the

truthful reporting strategy and the recommended action strategy. A direct mechanism

is incentive-feasible if it is incentive-compatible and feasible at the truthful equilibrium.

Take a mechanism ((M,BM ), (Rx,BRx , µRx), x, αΨ) with associated equilibrium report-

ing strategy ρ = ((Rm,BRm , µRm),m) and action strategy α = ((Ra,BRa , µRa), a). De-

fine a social choice function as the implied equilibrium mapping from types and realiza-

tions of the randomization devices to outcomes and actions: θT×rTx ×rTm×rTa → ξx,m×a.

Two mechanism are equivalent if they have the same social choice function.

Lemma A.1 (Revelation Principle). For any feasible mechanism there exists an equiv-

alent mechanism which is direct and incentive-feasible.

Proof. Take some feasible mechanism Ψ = ((M,BM ), (Rx,BRx , µRx), x, αΨ) and its equi-

librium reporting strategy ρ = ((Rm,BRm , µRm),m) and action strategy α = ((Ra,BRa , µRa), a).

Note that the recommended action strategy αΨ can be different than the equilibrium

action strategy α.

Take a probability space (R′m,BR′m , µR′m) with identical structure as the randomiza-

tion device of the agent implied by ρ.3 Construct a direct mechanism Γ by (i) set-

ting the message space to (Θ,BΘ), (ii) setting the outcome randomization device to

(Rx×R′m,BRx×R′m , µRx×R′m) and (iii) setting the outcome function to x∗(θT , (rx, r
′
m)T ) ≡

ξx,m(θT , rTx , r
′T
m ) for all (θT , rTx , r

′T
m ) ∈ ΘT ×RTx ×R′Tm , (iv) setting the recommended ac-

tion strategy to α. Then for any function g(xT , aT , θT ) it is straightforward to see that

EΨ,ρ,α

{
g(x, a, θT )

}
= EΓ,ρ∗,α

{
g(x∗, a, θT )

}
(4)

as long as the original expectation is well defined.

It implies that the direct mechanism Γ evaluated at the truthful reporting strategy and

action strategy α is feasible (replace g with the resource function H) and yields the

3(Rm,BRm , µRm) and (R′m,BR′
m
, µR′

m
) can be understood as two independent, identically distributed

lotteries.

3



same expected utility to the agent as the original mechanism (replace g with the utility

function U). We can repeat the same reasoning with expectation of g conditional on

any partial individual history to verify that all the equilibrium constraints are satisfied

as well. What remains to be shown is that the mechanism Γ is incentive-compatible.

Assume that the direct mechanism Γ is not incentive-compatible. Specifically, suppose

that there exist a reporting strategy ρ̂ = ((R̂m,BR̂m
, µR̂m

), m̂) and action strategy α̂ =

((R̂a,BR̂a
, µR̂a

), â) which together with Γ satisfy all the equilibrium constraints and are

such that EΓ,ρ̂,α̂

{
U(x̂, â, θT )

}
> EΓ,ρ∗,α

{
U(x∗, a, θT )

}
. Then we can define a reporting

strategy ˆ̂ρ associated with the mechanism Ψ as

ˆ̂ρ = ((Rm × R̂m,BRm×R̂m
, µRm×R̂m

), ˆ̂m : ΘT ×RTm × R̂Tm ×XT →MT ),

where ˆ̂m(θT , rTm, r̂
T
m, x

T ) ≡ m(m̂(θT , r̂Tm, x
T ), rTm, x

T ) for all (θT , rTm, r̂
T
m, x

T ) ∈ ΘT×RTm×
R̂Tm ×XT . Note that we have

x( ˆ̂m(θT , rTm, r̂
T
m, x

T ), rTx ) = x(m(m̂(θT , r̂Tm, x
T ), rTm, x

T ), rTx ) = x∗(m̂(θT , r̂Tm, x
T ), (rTx , r

T
m)),

(5)

for all (θT , rTx , r
T
m, r̂

T
m, x

T ) ∈ ΘT ×RTx ×RTm× R̂Tm×XT , where the first equality follows

from the definition of ˆ̂m and the second from the definition of x∗. Then for any function

g(xT , aT , θT ), for which the expectation is well defined, we can repeat the reasoning above

to show that EΓ,ρ̂,α̂

{
g(x∗, â, θT )

}
= EΨ, ˆ̂ρ,α̂

{
g(x, â, θT )

}
and analogously for conditional

expectations. It means that the mechanism Γ with the strategies (ˆ̂ρ, α̂) satisfies all the

equilibrium constraints and

EΨ, ˆ̂ρ,α̂

{
U(x, â, θT )

}
= EΓ,ρ̂,α̂

{
U(x∗, â, θT )

}
> EΓ,ρ∗,α

{
U(x∗, a, θT )

}
= EΨ,ρ,α

{
U(x, a, θT )

}
,

(6)

which contradicts the fact that (ρ, α) is an equilibrium of the mechanism Ψ. �

A.2. Additional results for the specific framework of this paper

In order to make a mapping between the general framework from the previous subsection

and the setting of the main text of this paper, I introduce the following assumptions

and naming conventions. The outcome space is set to X = R+ × R and the outcome

function x is split into a consumption function c and labor income function y. The

action space is A = R+ and I call the action function a the labor function n. The

utility function is U(cT , yT , nT , θ) =
∑T

t=1 β
t−1(u(cTt ) − v(nTt )). Finally, equilibrium

constraints on the reporting strategy ρ = ((Rm,BRm , µRm),m) and the labor strategy

ν = ((Rn,BRn , µRn), n) are the zero profit constraints

EΨ,ρ,ν

{
π1(y, n, θT ) | θT1 = θ

}
= 0 for all θ ∈ Θ (7)
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and the limited commitment constraints

κ ≥ EΨ,ρ,ν

{
πt(y, n, θ

T ) | θt, r̂tm, xt−1, rt−1
n

}
≥ −φ

for all t ≤ T and all (θt, rtm, x
t−1, rt−1

n ) ∈ Θt ×Rtm ×Xt−1 ×Rt−1
n . (8)

Two additional lemmas below justifies not using introducing the labor (or action, as

called in the previous subsection) randomization device or the outcome randomization

device in the specific setting of this paper.

Lemma A.2. Suppose that U(cT , yT , nT , θ) =
∑T

t=1 β
t−1(u(cTt ) − v(nTt )), where v is

increasing and strictly convex, and that the equilibrium constraints are given by (7) and

(8). The equilibrium labor function does not depend on the labor randomization device.

Proof. Consider a mechanism Ψ with an associated equilibrium reporting strategy ρ and

the equilibrium labor strategy ν containing a labor randomization device (Rn,BRn , µRn)

and a labor function n. Construct a new labor function n′ such that n′t(θ
T , rTm, x

T ) =

EΨ,ρ,α{nt(θT , rTm, xT , rTn ) | θt, rtm, xt} for all t ≤ T and all (θT , rTm, x
T ). Construct a labor

strategy ν ′ containing the labor function n′. Since all the equilibrium constraints are

linear in labor, it is straightforward to see that they are unaffected and (ρ, ν ′) ∈ C(Ψ).

Since the variability of labor supply is reduced and disutility from labor is strictly convex,

the agent obtains strictly higher expected utility, which contradicts the initial claim that

(ρ, ν) is an equilibrium. �

Lemma A.3. Suppose that U(cT , yT , nT , θ) =
∑T

t=1 β
t−1(u(cTt ) − v(nTt )), where u is

concave and v is strictly convex, both strictly increasing, and that the equilibrium con-

straints are given by (7) and (8). For any stochastic, incentive-feasible mechanism there

is a deterministic, incentive-feasible mechanism which yields the same expected utility to

all initial types.

Proof. Consider some stochastic incentive-feasible mechanism Ψ = ((Rx,BRx , µRx), c, y, n)

with associated equilibrium strategies (ρ∗, n), where n is a deterministic labor function.

Construct a new, deterministic mechanism Ψ′ = (c′, y′, n) in the following way. First,

for each period t ≤ T and each history of productivity reports θT find a constant con-

sumption level c′t(θ
T ) which yields the same utility from consumption as the original

mechanism:

u(c′t(θ
T )) = EΨ,ρ∗

{
u(ct) | θT

}
for all . (9)

Since agents face less consumption risk and have the same utility from consumption, the

planner saves some resources. Second, choose income function y′ which for each time

period t ≤ T and for each history of reports θT ∈ ΘT is equal to the expected income

conditional on the history of reports:

y′t(θ
T ) = EΨ,ρ∗

{
yt | θT

}
. (10)
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I will show that a mechanism Ψ′ = (c′, y′, n) has an equilibrium (ρ∗, n). Conditional on

reporting strategy ρ, agents choose labor strategy by solving

min
n

EΨ′,ρ

{
T∑
t=1

βt−1v(nt)

}
s.t. 7 and 8. (11)

Crucially, neither of the constraints depend on how labor income varies with rTx , what

matters is the expected income conditional on a history of reports. For instance, the

limited commitment constraints depend on EΨ′,ρ

{
πt | θt, rtm

}
, which can be expressed

as

EΨ′,ρ

{
πt | θt, rtm

}
= EΨ′,ρ

{
T∑
s=t

βs−t
(
θTs ns − ys

)
| θt, rtm

}
(12)

= EΨ′,ρ

{
T∑
s=t

βs−t
(
θTs ns − EΨ′,ρ {ys | θs, rsm}

)
| θt, rtm

}
(13)

and analogously for the zero profits constraints. Note that the expectation of income

conditional on a history of reports is the same in Ψ and Ψ′. Therefore, conditional

on a reporting strategy, agents would choose the same labor strategy in Ψ and Ψ′.

Furthermore, by construction a given reporting strategy yields the same utility from

consumption in Ψ and Ψ′. Therefore, if (ρ∗, n) is an equilibrium of the mechanism Ψ, it

is also an equilibrium of the mechanism Ψ′.

Therefore, Ψ′ is a incentive-compatible mechanism yielding identical expected utility to

each initial type as Ψ. Since Ψ′ involves more consumption insurance, it requires less

resources than Ψ and, hence, is feasible. �

B. Appendix to the quantitative exercise

B.1. Matching the US income distribution

Denote the empirical cdf of income by H(·) and the empirical density of income by h(·).
Incomes below $150,000 are distributed according to the lognormal distribution with pa-

rameters µLN and σLN . Parameters µLN and σLN are chosen to match the mean income

of $64,000 as in Sachs, Tsyvinski, and Werquin (2016) and to ensure the continuity of

the inverse hazard ratio at $150,000. Incomes above $150,000 are distributed according

to the distribution that matches the pattern of the inverse hazard ratio yh(y)/(1−H(y))

from Diamond and Saez (2011). I approximate the inverse hazard ratio between $150,000

and $475,000 with a polynomial g̃(y). First, I use the second degree polynomial match-

ing the value of the inverse hazard ratio at $150,000 and $475,000 and having a local

minimum at $475,000. Define H̄(y) = 1−H(y) and note that we can write the inverse

hazard ratio as −yH̄ ′(y)/H̄(y). Then it is easy to see that H̄(y) = CeG(y) in this income
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Figure 1: Comparison of empirical and calibrated inverse hazard ratio of income

(a) Empirical inverse hazard ratio (dotted
line, from Diamond and Saez 2011)

(b) Calibrated inverse hazard ratio
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interval, where G(y) is the antiderivative of −g̃(y)/y. The constant C is chosen such

that H̄(y) is continuous at $150,000. Then 1 − H̄(y) is the corresponding cumulative

distribution function of income. Second, above $475,000 I set the inverse hazard ratio

to a constant which amounts to a Pareto distribution for which I choose a support pa-

rameter to ensure the continuity of the cumulative density. Figure 1 demonstrates the

fit of the calibrated distribution to the empirical hazard ratio of income.

B.2. Computing the optimal tax schedule under two-sided commitment

with CRRA utility

Recall that the utility function is u(c) = c1−σ/(1 − σ), σ ≥ 0, for which the coefficient

of the absolute risk aversion at the consumption level c is σ/c.

Risk neutral agents (σ = 0). The no-randomization constraint requires that the

marginal tax rates are non-decreasing. We can apply this constraint in the manner sim-

ilar to ironing from the standard screening model (see Mussa and Rosen (1978)). First,

compute the Mirrleesian tax schedule T (·) ignoring the no-randomization constraint. If

the tax schedule is has non-decreasing tax rates everywhere, it is optimal under two-

sided commitment. Otherwise, identify income intervals over which the tax rates are

decreasing, flatten the tax rates in these intervals such that they are non-decreasing ev-

erywhere and optimize with respect to the tax rate in each interval. The optimal income

interval [y(θ1), y(θ2)] at which the tax rate is constant and equal T ′(y(θ1)) satisfies the

following optimality condition:

T ′(y(θ1))

1− T ′(y(θ1))
ε

ˆ θ2

θ1

y(θ)dµΘ(θ)

=

ˆ ∞
θ1

(min{y(θ), y(θ2)} − y(θ1))dµΘ(θ)−
ˆ ∞
θ1

(min{y(θ), y(θ2)} − y(θ1))dµ̃Θ(θ). (14)
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This optimality condition can be easily obtained perturbing the fixed tax rate at income

interval [y(θ1), y(θ2)] and requiring that the welfare gain from this perturbation is zero.

Risk averse agents (σ > 0). When agents are risk averse and have a coefficient of

absolute risk aversion which varies with a consumption level, a change of a tax rate

at some income level leads to a change of the coefficient of the absolute risk aversion

at higher income levels, which leads to tightening or relaxation of the no-randomization

constraint at higher income levels. This concern is not incorporated in the Mirrleesian tax

formulas.4 I avoid this complication by assuming that the no-randomization constraint

is binding in the income interval [0, ȳ] for some ȳ and is slack elsewhere. It is a natural

assumption to make since the empirical tax rates in the static Mirrlees model are U-

shaped (Diamond 1998; Saez 2001). Under this assumption I can use the standard tax

formula of Saez (2001) for incomes above ȳ. For incomes in interval [0, ȳ] the tax rates

can be extracted from the binding no-randomization constraint. A no-randomization

constraint that is binding in [0, ȳ] means that ṽ(y(θ), θ) is constant for all θ such that

y(θ) ≤ ȳ. Using the agents’ first-order condition, it implies that (1−T ′(y))u′(y−T (y))

is constant for all y ≤ ȳ. Given T (0) and T ′(0) we can recover the entire tax schedule

over [0, ȳ]. T (0) and T ′(0) are then chosen to maximize the planner’s objective subject

to the budget constraint.
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